eyeblink conditioning
Recently Published Documents


TOTAL DOCUMENTS

611
(FIVE YEARS 70)

H-INDEX

52
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Vanessa Vieites ◽  
Yvonne Ralph ◽  
Bethany Reeb-Sutherland ◽  
Anthony Steven Dick ◽  
Aaron T. Mattfeld ◽  
...  

The current study examined the relations between hippocampal structure (e.g., volume and neurite density) and performance on a trace eye blink conditioning (EBC) task in young children. Our first aim assessed whether individual differences in hippocampal volume were associated with trace EBC performance, using both percent Conditioned Responses (% CR) and CR onset latency or the average latency (ms) at which the child started their blink, as measures of hippocampal-dependent associative learning. Our second aim evaluated whether individual differences in hippocampal neurite density were associated with EBC performance using the same outcome measures. Typically developing 4- to 6-year-olds (N = 31; 14 girls; Mage = 5.67; SDage = 0.89) completed T1 and diffusion-weighted MRI scans and a 15-minute trace eyeblink conditioning task outside of the scanner. % CR and CR onset latency were computed across all tone-puff and tone-alone trials. While hippocampal volume was not associated with any of our EBC measures, greater hippocampal neurite density bilaterally, was associated with later CR onset. In other words, children with greater left and right hippocampal neurite density blinked closer to the US (i.e., air puff) than children with less hippocampal neurite density, indicating that structural changes in the hippocampus assisted in the accurate timing of conditioned responses.


2021 ◽  
Vol 15 ◽  
Author(s):  
Emiliano Trimarco ◽  
Pierandrea Mirino ◽  
Daniele Caligiore

Empirical evidence suggests that children with autism spectrum disorder (ASD) show abnormal behavior during delay eyeblink conditioning. They show a higher conditioned response learning rate and earlier peak latency of the conditioned response signal. The neuronal mechanisms underlying this autistic behavioral phenotype are still unclear. Here, we use a physiologically constrained spiking neuron model of the cerebellar-cortical system to investigate which features are critical to explaining atypical learning in ASD. Significantly, the computer simulations run with the model suggest that the higher conditioned responses learning rate mainly depends on the reduced number of Purkinje cells. In contrast, the earlier peak latency mainly depends on the hyper-connections of the cerebellum with sensory and motor cortex. Notably, the model has been validated by reproducing the behavioral data collected from studies with real children. Overall, this article is a starting point to understanding the link between the behavioral and neurobiological basis in ASD learning. At the end of the paper, we discuss how this knowledge could be critical for devising new treatments.


2021 ◽  
pp. 1319-1334
Author(s):  
Derick H. Lindquist ◽  
Joseph E. Steinmetz ◽  
Richard F. Thompson

2021 ◽  
Author(s):  
Shogo Ohmae ◽  
Keiko Ohmae ◽  
Shane A Heiney ◽  
Divya Subramanian ◽  
Javier F Medina

The neural architecture of the cerebellum is thought to be specialized for performing supervised learning: specific error-related climbing fiber inputs are used to teach sensorimotor associations to small ensembles of Purkinje cells located in functionally distinct modules that operate independently of each other in a purely feedforward manner. Here, we test whether the basic operation of the cerebellum complies with this basic architecture in mice that learned a simple sensorimotor association during eyeblink conditioning. By recording Purkinje cells in different modules and testing whether their responses rely on recurrent circuits, our results reveal three operational principles about the functional organization of the cerebellum that stand in stark contrast to the conventional view: (1) Antagonistic organization, (2) Recurrent network dynamics, and (3) Intermodular communication. We propose that the neural architecture of the cerebellum implements these three operational principles to achieve optimal performance and solve a number of problems in motor control.


2021 ◽  
Author(s):  
Maria Roa Oyaga ◽  
Sebastiaan K.E Koekkoek ◽  
Aleksandra Badura

The functional and molecular sources of behavioral variability in mice are not fully understood. As a consequence, the predominant use of male mice has become a standard in animal reseach, under the assumption that males are less variable than females. Similarly, to homogenize genetic background, neuroscience studies have almost exclusively used the C57BL/6 (B6) strain. Here, we examined individual differences in performance in the context of associative learning. We performed delayed eyeblink conditioning while recording locomotor activity in mice from both sexes in two strains (B6 and B6CBAF1). Further, we used a C-FOS immunostaining approach to explore brain areas involved in eyeblink conditioning across subjects, and correlate them with behavioral performance. We found that B6 male and female mice show comparable variability in this task and that females reach higher learning scores. We found a strong positive correlation across sexes between learning scores and voluntary locomotion. C-FOS immunostainings revealed positive correlations between C-FOS positive cell density and learning in the cerebellar cortex as well as multiple, previously unreported extra-cerebellar areas. We found consistent and comparable correlations in eyeblink performance and C-fos expression in B6 and B6CBAF1 females and males. Taken together, we show that differences in motor behavior and activity across brain areas correlate with learning scores during eyeblink conditioning across strains and sexes.


2021 ◽  
Author(s):  
Amy P Rapp ◽  
Timothy J Hark ◽  
John M Power ◽  
M Matthew Oh ◽  
Jeffrey N Savas ◽  
...  

Neuroscience techniques, including in vivo recording, have allowed for a great expansion in knowledge; however, this technology may also affect the very phenomena researchers set out to investigate. Including both female and male mice in our associative learning experiments shed light on sex differences on the impact of chronic implantation of tetrodes on learning. While previous research showed intact female mice acquired trace eyeblink conditioning faster than male and ovariectomized females, implantation of chronic microdrive arrays showed sexually dimorphic effects on learning. Microdrive implanted male mice acquired the associative learning paradigm faster than both intact and ovariectomized females. These effects were not due to the weight of the drive alone, as there were no significant sex-differences in learning of animals that received dummy drive implants without tetrodes lowered into the brain. Tandem mass tag mass spectrometry and western blot analysis suggest that significant alterations in the MAPK pathway, acute inflammation, and brain derived neurotrophic factor may underlie these observed sex- and surgery-dependent effects on learning.


2021 ◽  
Author(s):  
Anna Sadnicka ◽  
Lorenzo Rocchi ◽  
Anna Latorre ◽  
Elena Antelmi ◽  
James T Teo ◽  
...  

Impaired eyeblink conditioning is often cited as evidence for cerebellar dysfunction in isolated dystonia. However, the results from individual studies are conflicting and underpowered. This collaborative project collated all published data and systematically re-examined the contribution of the predictors dystonia and its subtypes within a statistical model which controlled for the co-variates age and sex. Original neurophysiological data were shared and a sex and age matched control group were collected (dystonia n=52, controls n=50). Two raters blinded to participant identity rescored all recordings (6732 trials). After high inter-rater agreement was confirmed, mean conditioning per block was entered into a mixed repetitive measures model to evaluate the influence of sex, age, dystonia subtype (focal hand dystonia, cervical dystonia, DYT-TOR1A and DYT-THAP1) and clinical features such as tremor. There was a wide range of conditioning behavior across individuals in both groups. Young age (p=0.031) was associated with higher conditioning. All dystonia versus controls showed no difference in conditioning (p=0.517). Analysis of dystonia subgroup, with age and sex as co-variates, showed that conditioning in cervical dystonia, focal hand dystonia and DYT-TOR1A was comparable to controls. DYT-THAP1 was characterized by high levels of conditioning. Clinical features such as tremor did not significantly influence conditioning. Sample size estimates for future work are provided based on the variance observed. Eyeblink conditioning, a proxy for cerebellar function, appears intact in the subtypes of isolated dystonia examined. Precise mechanisms for how the cerebellum interplays mechanistically with other key neuroanatomical nodes within the dystonic network remains elusive.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Katarzyna Kita ◽  
Catarina Albergaria ◽  
Ana S Machado ◽  
Megan R Carey ◽  
Martin Mueller ◽  
...  

AMPA receptors (AMPARs) mediate excitatory neurotransmission in the CNS and their subunit composition determines synaptic efficacy. Whereas AMPAR subunits GluA1–GluA3 have been linked to particular forms of synaptic plasticity and learning, the functional role of GluA4 remains elusive. Here we demonstrate a crucial function of GluA4 for synaptic excitation and associative memory formation in the cerebellum. Notably, GluA4-knockout mice had ~80% reduced mossy fiber to granule cell synaptic transmission. The fidelity of granule cell spike output was markedly decreased despite attenuated tonic inhibition and increased NMDA receptor-mediated transmission. Computational network modeling incorporating these changes revealed that deletion of GluA4 impairs granule cell expansion coding, which is important for pattern separation and associative learning. On a behavioral level, while locomotor coordination was generally spared, GluA4-knockout mice failed to form associative memories during delay eyeblink conditioning. These results demonstrate an essential role for GluA4-containing AMPARs in cerebellar information processing and associative learning.


2021 ◽  
Vol 15 ◽  
Author(s):  
Henk-Jan Boele ◽  
Sangyun Joung ◽  
Joanne E. Fil ◽  
Austin T. Mudd ◽  
Stephen A. Fleming ◽  
...  

Introduction: Pigs have been an increasingly popular preclinical model in nutritional neuroscience, as their anatomy, physiology, and nutrition requirements are highly comparable to those of humans. Eyeblink conditioning is one of the most well-validated behavioral paradigms in neuroscience to study underlying mechanisms of learning and memory formation in the cerebellum. Eyeblink conditioning has been performed in many species but has never been done on young pigs. Therefore, our aim here was to develop and validate an eyeblink conditioning paradigm in young pigs.Method: Eighteen intact male pigs were artificially reared from postnatal day 2–30. The eyeblink conditioning setup consisted of a sound-damping box with a hammock that pigs were placed in, which allowed the pig to remain comfortable yet maintain a typical range of head motion. In a delay conditioning paradigm, the conditional stimulus (CS) was a 550 ms blue light-emitting diode (LED), the unconditional stimulus (US) was a 50 ms eye air-puff, the CS-US interval was 500 ms. Starting at postnatal day 14, pigs were habituated for 5 days to the eyeblink conditioning setup, followed by 5 daily sessions of acquisition training (40 paired CS-US trials each day).Results: The group-averaged amplitude of conditioned eyelid responses gradually increased over the course of the 5 days of training, indicating that pigs learned to make the association between the LED light CS and the air-puff US. A similar increase was found for the conditioned response (CR) probability: the group-averaged CR probability on session 1 was about 12% and reached a CR probability of 55% on day 5. The latency to CR peak time lacked a temporal preference in the first session but clearly showed preference from the moment that animals started to show more CRs in session 2 and onwards whereby the eyelid was maximally closed exactly at the moment that the US would be delivered.Conclusion: We concluded that 3-week-old pigs have the capability of performing in a cerebellar classical conditioning task, demonstrating for the first time that eyeblink conditioning in young pigs has the potential to be a valuable behavioral tool to measure neurodevelopment.


Sign in / Sign up

Export Citation Format

Share Document