scholarly journals Correcting QUEST Magnetic Resonance Imaging–Sensitive Free Radical Production in the Outer Retina In Vivo Does Not Correct Reduced Visual Performance in 24-Month-Old C57BL/6J Mice

2021 ◽  
Vol 62 (6) ◽  
pp. 24
Author(s):  
Bruce A. Berkowitz ◽  
Robert H. Podolsky ◽  
Karen Lins Childers ◽  
Robin Roberts ◽  
Michael Schneider ◽  
...  
2020 ◽  
Vol 14 ◽  
pp. 117822182090414
Author(s):  
Andréa L Hobkirk ◽  
Zachary Bitzer ◽  
Reema Goel ◽  
Christopher T Sica ◽  
Craig Livelsberger ◽  
...  

Background: Public health concerns over the addictive potential of electronic cigarettes (e-cigs) have heightened in recent years. Brain function during e-cig use could provide an objective measure of the addictive potential of new vaping products to facilitate research; however, there are limited methods for delivering e-cig aerosols during functional magnetic resonance imaging (fMRI). The current study describes the development and feasibility testing of a prototype to deliver up to four different e-cig aerosols during fMRI. Methods: Standardized methods were used to test the devices’ air flow variability, nicotine yield, and free radical production. MRI scans were run with and without the device present to assess its safety and effects on MRI data quality. Five daily smokers were recruited to assess plasma nicotine absorption from e-liquids containing nicotine concentrations of 8, 11, 16, 24, and 36 mg/ml. Feedback was collected from participants through a semi-structured interview and computerized questionnaire to assess comfort and subjective experiences of inhaling aerosol from the device. Results: Nicotine yield captured from the aerosol produced by the device was highly correlated with the nicotine concentration of the e-liquids used (R2 = 0.965). Nicotine yield was reduced by a mean of 48% and free radical production by 17% after traveling through the device. The e-liquid containing the highest nicotine concentration tested (36 mg/ml) resulted in the highest plasma nicotine boost (6.6 ng/ml). Overall, participants reported that the device was comfortable to use and inhaling the e-cig aerosols was tolerable. The device was determined to be safe for use during fMRI and had insignificant effects on scan quality. Conclusions: With the current project, we were able to design a working prototype that safely and effectively delivers e-cig aerosols during fMRI. The device has the potential to be used to assess brain activation during e-cig use and to compare brain reactivity to varying flavors, nicotine concentrations, and other e-cig characteristics.


2015 ◽  
Vol 56 (13) ◽  
pp. 7931 ◽  
Author(s):  
Bruce A. Berkowitz ◽  
Bryce X. Bredell ◽  
Christopher Davis ◽  
Marijana Samardzija ◽  
Christian Grimm ◽  
...  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S692-S692
Author(s):  
Mathias Hoehn ◽  
Uwe Himmelreich ◽  
Ralph Weber ◽  
Pedro Ramos-Cabrer ◽  
Susanne Wegener ◽  
...  

2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document