Atypically slow processing of faces and non-faces in older autistic adults

Autism ◽  
2021 ◽  
pp. 136236132110652
Author(s):  
Joe Bathelt ◽  
P Cédric MP Koolschijn ◽  
Hilde M Geurts

Face recognition is a fundamental function that requires holistic processing. Differences in face processing have been consistently identified in autistic children, but it is unknown whether these differences persist across the adult lifespan. Using event-related functional magnetic resonance imaging, we measured holistic face processing with a rapid Mooney faces task in 50 autistic and 49 non-autistic participants (30–74 years). Behavioral tasks included a self-paced version of the same paradigm and a global–local processing task (Navon). Reduced detection rates for faces, but not non-faces, were found in autistic adults, including slower responses on all conditions. Without time constraints, differences in accuracy disappeared between groups, although reaction times in correctly identifying faces remained higher in autistic adults. The functional magnetic resonance imaging results showed lower activation in the left and right superior frontal gyrus in the autism group but no age-related differences. Overall, our findings point toward slower information processing speed rather than a face recognition deficit in autistic adults. This suggests that face-processing differences are not a core feature of autism across the adult lifespan. Lay abstract Some theories suggested that social difficulties in autism arise from differences in the processing of faces. If face-processing difficulties are central to autism, then they should be as persistent as social difficulties across the lifespan. We tested this by asking autistic and neurotypical participants between 30 and 75 years to complete face detection tasks. Both autistic and neurotypical adults responded more slowly with age. When participants had to respond quickly, autistic adults made more errors in face detection regardless of their age. However, when the time constraint was removed, autistic adults performed as well as the neurotypical group. Across tasks, autistic adults responded more slowly when asked to detect both face and non-face stimuli. We also investigated brain activation differences in the face detection task with functional magnetic resonance imaging. The results indicated lower activation in the autism group in the left and right superior frontal gyrus. The superior frontal gyrus is not typically implicated in face processing but in more general processing, for example, keeping instructions in mind and following them. Together with the behavioral results, this suggests that there is no specific deficit in face processing in autistic adults between 30 and 75 years. Instead, the results suggest differences in general processing, particularly in the speed of processing. However, this needs to be investigated further with methods that are more sensitive to the timing of brain activation.

Neurosurgery ◽  
2004 ◽  
Vol 55 (3) ◽  
pp. 569-581 ◽  
Author(s):  
John L. Ulmer ◽  
Lotfi Hacein-Bey ◽  
Vincent P. Mathews ◽  
Wade M. Mueller ◽  
Edgar A. DeYoe ◽  
...  

Abstract OBJECTIVE: To illustrate how lesion-induced neurovascular uncoupling at functional magnetic resonance imaging (fMRI) can mimic hemispheric dominance opposite the side of a lesion preoperatively. METHODS: We retrospectively reviewed preoperative fMRI mapping data from 50 patients with focal brain abnormalities to establish patterns of hemispheric dominance of language, speech, visual, or motor system functions. Abnormalities included gliomas (31 patients), arteriovenous malformations (AVMs) (11 patients), other congenital lesions (4 patients), encephalomalacia (3 patients), and tumefactive encephalitis (1 patient). A laterality ratio of fMRI hemispheric dominance was compared with actual hemispheric dominance as verified by electrocortical stimulation, Wada testing, postoperative and posttreatment deficits, and/or lesion-induced deficits. fMRI activation maps were generated with cross-correlation (P < 0.001) or t test (P < 0.001) analysis. RESULTS: In 50 patients, a total of 85 functional areas were within 5 mm of the edge of a potentially resectable lesion. In 23 of these areas (27%), reduced fMRI signal in perilesional eloquent cortex in conjunction with preserved or increased signal in homologous contralateral brain areas revealed functional dominance opposite the side of the lesion. This suggested possible lesion-induced transhemispheric cortical reorganization to homologous brain regions (homotopic reorganization). In seven patients, however, the fMRI data were inconsistent with other methods of functional localization. In two patients with left inferior frontal gyrus gliomas and in one patient with focal tumefactive meningoencephalitis, fMRI incorrectly suggested strong right hemispheric speech dominance. In two patients with lateral precentral gyrus region gliomas and one patient with a left central sulcus AVM, the fMRI pattern incorrectly suggested primary corticobulbar motor dominance contralateral to the side of the lesion. In a patient with a right superior frontal gyrus AVM, fMRI revealed pronounced left dominant supplementary motor area activity in response to a bilateral complex motor task, but right superior frontal gyrus perilesional hemorrhage and edema subsequently caused left upper-extremity plegia. Pathophysiological factors that might have caused neurovascular uncoupling and facilitated pseudo-dominance at fMRI in these patients included direct tumor infiltration, neovascularity, cerebrovascular inflammation, and AVM-induced hemodynamic effects. Sixteen patients had proven (1 patient), probable (2 patients), or possible (13 patients) but unproven lesion-induced homotopic cortical reorganization. CONCLUSION: Lesion-induced neurovascular uncoupling causing reduced fMRI signal in perilesional eloquent cortex, in conjunction with normal or increased activity in homologous brain regions, may simulate hemispheric dominance and lesion-induced homotopic cortical reorganization.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Cui-Ping Xu ◽  
Shou-Wen Zhang ◽  
Tie Fang ◽  
Ma Manxiu ◽  
Qian Chencan ◽  
...  

Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.


Sign in / Sign up

Export Citation Format

Share Document