Particle image velocimetry investigation on air distribution of surface-source buoyancy plume changing heating intensity and structure size in a thermostatic chamber

2020 ◽  
pp. 1420326X2092624
Author(s):  
Xin Wang ◽  
Yukun Xu ◽  
Yinchen Yang ◽  
Bingyan Song

For large space buildings like industrial plants with huge heat generation, the role that surface-source plumes play becomes more crucial. To study the air distribution and movement of plumes, the first step is to quantify how the airflow gets distributed in chambers. The experiment was carried out in a thermostatic chamber where there was no ventilation. Four hundred flow field snapshots (in each region) were measured by a two-dimensional particle image velocimetry system at a sampling frequency of 3 Hz, and the time-average flow field was processed by the adaptive correlation algorithm to quantify the air distribution of the plume. According to the measured data, the variation law of the axial velocity of the surface-source plume under different heat source parameters was analysed. The formula coefficients of the axial velocity, the extended radius and the mass flow of the plume were discussed, and the coefficients from current two mainstream methods and those obtained in this paper were compared. The results of this study will be useful to predict motion of surface-plumes and optimize airflow patterns in large spaces.

2021 ◽  
Vol 9 (8) ◽  
pp. 905
Author(s):  
Rui Deng ◽  
Shigang Wang ◽  
Wanzhen Luo ◽  
Tiecheng Wu

In this study, particle image velocimetry was applied to measure the flow field around the bow region of a trimaran with different appendages. The dimensionless axial velocity u/U in test planes 1 and 2 of the testing model was measured by using a towed underwater stereoscopic particle image velocimetry (SPIV) system. Based on the measured flow field data, the local sinkage values in test planes 1 and 2 of the testing model with different appendages at speeds of 1.766 and 2.943 m/s were presented. In addition, the effects of speed, bulbous bow type, T foils, and bow wave on the axial velocity u/U were studied in detail. The acquired experimental data help in understanding the distribution of the flow field around the ship bow, and the data can also act as a reference to verify computational fluid dynamics (CFD) results.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2010 ◽  
Vol 43 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emily J. Berg ◽  
Jessica L. Weisman ◽  
Michael J. Oldham ◽  
Risa J. Robinson

Sign in / Sign up

Export Citation Format

Share Document