scholarly journals Flow-Field Measurements in a Wing-Fuselage Junction Using an Embedded Particle Image Velocimetry System

Author(s):  
Luther N. Jenkins ◽  
Chung-Sheng Yao ◽  
Scott M. Bartram
2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2020 ◽  
pp. 1420326X2092624
Author(s):  
Xin Wang ◽  
Yukun Xu ◽  
Yinchen Yang ◽  
Bingyan Song

For large space buildings like industrial plants with huge heat generation, the role that surface-source plumes play becomes more crucial. To study the air distribution and movement of plumes, the first step is to quantify how the airflow gets distributed in chambers. The experiment was carried out in a thermostatic chamber where there was no ventilation. Four hundred flow field snapshots (in each region) were measured by a two-dimensional particle image velocimetry system at a sampling frequency of 3 Hz, and the time-average flow field was processed by the adaptive correlation algorithm to quantify the air distribution of the plume. According to the measured data, the variation law of the axial velocity of the surface-source plume under different heat source parameters was analysed. The formula coefficients of the axial velocity, the extended radius and the mass flow of the plume were discussed, and the coefficients from current two mainstream methods and those obtained in this paper were compared. The results of this study will be useful to predict motion of surface-plumes and optimize airflow patterns in large spaces.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Alexandros Terzis ◽  
Christoforos Skourides ◽  
Peter Ott ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand

Integrally cast turbine airfoils with wall-integrated cooling cavities are greatly applicable in modern turbines providing enhanced heat exchange capabilities compared to conventional cooling passages. In such arrangements, narrow impingement channels can be formed where the generated crossflow is an important design parameter for the achievement of the desired cooling efficiency. In this study, a regulation of the generated crossflow for a narrow impingement channel consisting of a single row of five inline jets is obtained by varying the width of the channel in the streamwise direction. A divergent impingement channel is therefore investigated and compared to a uniform channel of the same open area ratio. Flow field and wall heat transfer experiments are carried out at engine representative Reynolds numbers using particle image velocimetry (PIV) and liquid crystal thermography (LCT). The PIV measurements are taken at planes normal to the target wall along the centerline for each individual jet, providing quantitative flow visualization of jet and crossflow interactions. The heat transfer distributions on the target plate of the channels are evaluated with transient techniques and a multilayer of liquid crystals (LCs). Effects of channel divergence are investigated combining both the heat transfer and flow field measurements. The applicability of existing heat transfer correlations for uniform jet arrays to divergent geometries is also discussed.


2000 ◽  
Author(s):  
Shankar Devasenathipathy ◽  
Joshua I. Molho ◽  
James C. Mikkelsen ◽  
Juan G. Santiago ◽  
Kohsei Takehara

Abstract A micron-resolution particle image velocimetry (PIV) system has been developed to spatially and temporally resolve electroosmotic flow fields within microfluidic bioanalytical devices. A second diagnostic technique, particle tracking velocimetry (PTV) has been used to determine the distribution of electrophoretic mobilities of seed particles and thereby make the PIV measurements quantitative. This second particle tracking technique has been used to determine probability distribution functions of the seed particles. Results from simulations of electric fields yield local electric field strengths in the geometries of interest. The measured mean mobility of the seed particles (obtained from PTV measurements) is then multiplied by the local electric field vector to obtain the electrophoretic velocity. The variance on the particle mobility measurement influences the errors introduced in the electroosmotic flow measurements. After total particle velocities are measured within a microfluidic system of interest, the seed particle electrophoretic velocities are subtracted from the PIV total velocity data to obtain electroosmotic flow field velocities. Ensemble-averaged velocity field measurements for electroosmotic flow at the intersection of a cross-channel are presented.


2019 ◽  
Vol 46 (2) ◽  
pp. 0204007
Author(s):  
栾昆鹏 Luan Kunpeng ◽  
叶景峰 Ye Jingfeng ◽  
王晟 Wang Sheng ◽  
沈炎龙 Shen Yanlong ◽  
赵柳 Zhao Liu ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11615
Author(s):  
Björn Espenhahn ◽  
Lukas Schumski ◽  
Christoph Vanselow ◽  
Dirk Stöbener ◽  
Daniel Meyer ◽  
...  

For industrial grinding processes, the workpiece cooling by metalworking fluids, which strongly influences the workpiece surface layer quality, is not yet fully understood. This leads to high efforts for the empirical determination of suitable cooling parameters, increasing the part manufacturing costs. To close the knowledge gap, a measurement method for the metalworking fluid flow field near the grinding wheel is desired. However, the varying curved surfaces of the liquid phase result in unpredictable light deflections and reflections, which impede optical flow measurements. In order to investigate the yet unknown optical measurement capabilities achievable under these conditions, shadowgraphy in combination with a pattern correlation technique and particle image velocimetry (PIV) are applied in a grinding machine. The results show that particle image velocimetry enables flow field measurements inside the laminar metalworking fluid jet, whereby the shadowgraph imaging velocimetry complements these measurements since it is in particular suitable for regions with spray-like flow regimes. As a conclusion, optical flow field measurements of the metalworking fluid flow in a running grinding machine are shown to be feasible.


Sign in / Sign up

Export Citation Format

Share Document