scholarly journals Nanostructure and burning mode of light-duty diesel particulate with conventional diesel, biodiesel, and intermediate blends

2017 ◽  
Vol 18 (5-6) ◽  
pp. 520-531 ◽  
Author(s):  
Andrea Strzelec ◽  
Randy L Vander Wal ◽  
Samuel A Lewis ◽  
Todd J Toops ◽  
C Stuart Daw
Author(s):  
Amy M. Peterson ◽  
Po-I Lee ◽  
Ming-Chia Lai ◽  
Ming-Cheng Wu ◽  
Craig L. DiMaggio ◽  
...  

This paper compares 20% bio-diesel (B20-choice white grease) fuel with baseline ultra low sulfur diesel (ULSD) fuel on the emissions and performance of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) coupled to a light-duty 4-cylinder 2.8-liter common-rail DI diesel engine. The present paper focuses on the comparison of the fuel effects on loading and active regeneration of the DPF between B20 and ULSD. B20, in general, produces less soot and has lower regeneration temperature compared to soot loaded with ULSD. NO2 concentrations before the DPF were found to be 6% higher with B20, indicating more availability of NO2 to oxidize the soot. Exhaust speciation of the NO2 availability indicates that the slight increase in NOx from B20 is not the dominant cause for the lower temperature regeneration and faster regeneration rate but the reactivity of the soot that is in the DPF. Formaldehyde concentrations are found to be higher with B20 during regeneration due to increased oxygen concentrations in the exhaust stream. Finally the oil dilution effect due to post injection to actively regenerate the DPF is also investigated using a prototype oil sensor and FTIR instrumentation. Utilizing an active regeneration strategy accentuates the possibility of fuel oil dilution of the engine oil. The onboard viscosity oil sensor used was in good agreement with the viscosity bench test and FTIR analysis and provided oil viscosity measurement over the course of the project. Operation with B20 shows significant fuel dilution and needs to be monitored to prevent engine deterioration.


1998 ◽  
Vol 20 (1/2/3/4) ◽  
pp. 219 ◽  
Author(s):  
Konstantin Pattas ◽  
Nikolas Kyriakis ◽  
Zissis Samaras ◽  
Theodoros Manikas ◽  
Panaylotis Pistikopoulos ◽  
...  

2020 ◽  
Author(s):  
Evangelia Kostenidou ◽  
Alvaro Martinez-Valiente ◽  
Badr R'Mili ◽  
Baptiste Marques ◽  
Brice Temime-Roussel ◽  
...  

Abstract. Changes in engine technologies and after-treatment devices can profoundly alter the chemical composition of the emitted pollutants. To investigate these effects, we characterized the chemical composition of particles emitted from three diesel and four gasoline Euro 5 light duty vehicles on a chassis dynamometer facility. Black carbon (BC) was the dominant emitted species with emission factors (EFs) varying from 0.2 to 7.1 mg km−1 for gasoline cars and 0.003 to 0.08 mg km−1 for diesel cars. For gasoline cars, the organic matter (OM) EFs varied from 5 to 103 µg km−1 for direct injection (GDI) vehicles, and from 1 to 8 µg km−1 for port fuel injection (PFI) vehicles, while for the diesel cars it ranged between 0.15 and 65 µg km−1. Cold-start cycles and more specifically the first minutes of the cycle, contributed the largest fraction of the PM including BC, OM and Polycyclic Aromatic Hydrocarbons (PAHs). More than 40 PAHs, including methylated, nitro, oxygenated and amino PAHs were identified and quantified in both diesel and gasoline exhaust particles using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS). The PAHs emissions from the GDI technology were a factor of 4 higher compared to the vehicles equipped with a PFI system during the cold start cycle, while the nitro-PAHs fraction was much more appreciable in the GDI emissions. For two of the three diesel vehicles the PAHs emissions were close to the detection limit, but for one, which presented an after-treatment device failure, the average PAHs EF was 2.04 µg km−1. Emissions of nanoparticles (below 30 nm), mainly composed by ammonium bisulfate, were measured during the passive regeneration of the catalyzed diesel particulate filter (CDPF) vehicle. TEM images confirmed the presence of ubiquitous nanometric metal inclusions into soot particles emitted from the diesel vehicle equipped with a fuel borne catalyst – diesel particulate filter (FBC-DPF). XPS analysis of the particles emitted by the PFI car revealed both the presence of heavy elements (Ti, Zn, Ca, Si, P, Cl), and disordered soot surface with a significant concentration of carbon radical defects having possible consequences on both chemical reactivity and particle toxicity. Our findings show that different after-treatment technologies have an important effect on the level and the chemical composition of the emitted particles. In addition, this research highlights the importance of the particle filter devices condition and their regular checking.


Sign in / Sign up

Export Citation Format

Share Document