diesel particulate
Recently Published Documents


TOTAL DOCUMENTS

1747
(FIVE YEARS 212)

H-INDEX

59
(FIVE YEARS 11)

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 121951
Author(s):  
Ali M.A. Attia ◽  
A.R. Kulchitskiy ◽  
Mohamed Nour ◽  
Ahmed I. El-Seesy ◽  
Sameh A. Nada

2021 ◽  
Vol 23 (1) ◽  
pp. 407
Author(s):  
Su Jeong Song ◽  
Bongkyun Park ◽  
Kyuhyung Jo ◽  
Chan-Sik Kim

Particulate matter (PM) is an environmental hazard that is associated with various human health risks. The olfactory system is directly exposed to PM; therefore, the influence of PM exposure on olfactory function must be investigated. In this study, we propose a zebrafish olfactory model to evaluate the effects of exposure to diesel particulate matter (DPM), which was labeled Korean diesel particulate matter (KDP20). KDP20 comprises heavy metals and polycyclic aromatic hydrocarbons (PAHs). KDP20 exposed olfactory organs exhibited reduced cilia and damaged epithelium. Olfactory dysfunction was confirmed using an odor-mediated behavior test. Furthermore, the olfactory damage was analyzed using Alcian blue and anti-calretinin staining. KDP20 exposed olfactory organs exhibited histological damages, such as increased goblet cells, decreased cell density, and calretinin level. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that PAHs exposure related genes (AHR2 and CYP1A) were upregulated. Reactive oxidation stress (ROS) (CAT) and inflammation (IL-1B) related genes were upregulated. Furthermore, olfactory sensory neuron (OSN) related genes (OMP and S100) were downregulated. In conclusion, KDP20 exposure induced dysfunction of the olfactory system. Additionally, the zebrafish olfactory system exhibited a regenerative capacity with recovery conditions. Thus, this model may be used in future investigating PM-related diseases.


2021 ◽  
Author(s):  
Rafał Sala ◽  
Kamil Kołek ◽  
Witold Konior

This paper describes the methodology and test results of diesel particulate filter (DPF) functional testing performed on non-road compression ignition engine installed on test bed. The scope of work included testing of various DPF regeneration strategies, backpressure and balance point tests and emission performance evaluation during a legislative test cycles. The aim of this study was to observe and investigate the influence of exhaust gas parameters on DPF functionality in terms of soot loading, type and duration of the regeneration and emission performance. Under investigation was also the capability of soot burning rate. The DPF sample under test was part of the complete exhaust aftertreatment system (ATS) which consisted of: a diesel oxidation catalyst (DOC), a DPF and a selective catalytic reduction system (SCR). Testing was carried out on a heavy-duty diesel engine installed on a test stand with a dynamic dynamometer and equipped with an emission bench. The test program allowed to assess the engine matching to exhaust aftertreatment system with regard to emissions compliance, in-service operation and necessary engine control unit (ECU) calibration works. The results show the influence of the DPF regeneration strategy on its duration and on the soot mass burn rate. Passive DPF regeneration was a favorable mode of DPF cleaning, due to lack of fuel penalty and lower aging impact on the entire ATS. Optimization of soot flow rate, exhaust gas temperature and the chemistry of the DOC/DPF was further recommended to ensure the long-term durability of the entire system.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1425
Author(s):  
Hao Chen ◽  
Xin Sun ◽  
Xiaochen Wang ◽  
Fengyu Sun ◽  
Peng Zhang ◽  
...  

Polyoxymethylene dimethyl ether (PODEn) is a promising diesel additive, especially in particulate matter reduction. However, how PODEn addition affects the filtration efficiency and regeneration process of a catalytic diesel particulate filter is still unknown. Therefore, this experimental work investigated the size-dependent particulate number removal efficiency under various engine loads and exhaust gas recirculation ratios when fueling with diesel and diesel/PODEn mixture. In addition, the regeneration behavior of the cDPF was studied by determining the break-even temperatures for both tested fuels. The results showed that the cDPF had lower removal efficiencies in nucleation mode particles but higher filtration efficiencies in accumulation mode particles. In addition, the overall filtration efficiency for P10 particles was higher than that for D100 particles. Positioning the upstream cDPF, increasing the EGR ratio slightly decreased the number concentration of nucleation mode particles but greatly increased that of accumulation mode particles. However, increasing the EGR ratio decreased the removal efficiency of nanoparticles, and this effect was more apparent for the P10 case. Under the same period of soot loading, the pressure drop of P10 fuel was significantly lower than that of diesel fuel. In addition, a significantly lower BET was observed for the P10 fuel, in comparison with D100 fuel. In conclusion, adopting cDPF is beneficial for fueling with P10 in terms of the overall filtration efficiency in the particulate number and the lower input energy requirement for active regeneration. However, with the addition of EGR, the lower filtration efficiencies of nanoparticles should be concerned, especially fueling with diesel/PODEn mixture.


Author(s):  
Moch. Aziz Kurniawan ◽  
Aat Eska Fahmadi ◽  
Yogi Oktopianto ◽  
Siti Shofiah

The use of diesel engines in commercial vehicles is still the main choice and the most widely used. The increasing number of commercial vehicles that use diesel engines can pollute the environment and cause noise. In order to reduce exhaust emissions and noise in diesel engines, a particulate filter diesel technology was created which is installed in commercial vehicle diesel engines. This study uses an experimental method. The test was carried out on a Mitsubishi L300 commercial vehicle diesel engine type 4D56 4 cylinder with a cylinder capacity of 2477 cc. The diesel particulate filter technology uses a half honeycomb model made from galvalume plates, with variations in the addition of filters in the form of glass wool of 50 grams, 100 grams, 150 grams, 200 grams, and 250 grams. Testing the exhaust emissions of a diesel engine using a TEN Automotive Equipment Innova 2000 multigas analyzer with a smoketester. Sound noise testing using a sound level meter test tool LT Lutron SL-4001. The test results with the addition of diesel particulate filter technology can reduce exhaust emissions and sound noise. The use of diesel particulate filter technology can reduce exhaust emissions in the form of Particulate Matter (PM) most optimally at the addition of a 100 gram filter with a decrease of 45.9%. The most optimal reduction in noise is the addition of a 50 gram filter with a decrease of 26.5%.


Sign in / Sign up

Export Citation Format

Share Document