Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm

2017 ◽  
Vol 17 (2) ◽  
pp. 169-184 ◽  
Author(s):  
Shuo Feng ◽  
Jinqing Jia

In this article, a microhabitat frog-leaping algorithm is proposed based on original shuffled frog-leaping algorithm and effective independence method to make the algorithm more efficient to optimize the 3-axis acceleration sensor configuration in the vibration test of structural health monitoring. Optimal sensor placement is a vital component of vibration test in structural health monitoring technique. Acceleration sensors should be placed such that all of the important information is collected. The resulting sensor configuration should be optimal such that the testing resources are saved. In addition, sensor configuration should be calculated automatically to facilitate engineers. However, most of the previous methods focus on the sensor placement of 1-axis sensors. Then, the 3-axis acceleration sensors are calculated by the method of 1-axis sensors, which results in non-optimal placement of many 3-axis acceleration sensors. Moreover, the calculation precisions and efficiencies of most of the previous methods cannot meet the requirement of practical engineering. In this work, the microhabitat frog-leaping algorithm is proposed to solve the optimal sensor placement problems of 3-axis acceleration sensors. The computation precision and efficiency are improved by microhabitat frog-leaping algorithm. Finally, microhabitat frog-leaping algorithm is applied and compared with other algorithms using Dalian South Bay Cross-sea Bridge.

2019 ◽  
Vol 19 (4) ◽  
pp. 1287-1308 ◽  
Author(s):  
Yi Tan ◽  
Limao Zhang

Structural health monitoring plays an increasingly significant role in detecting damages for large and complex structures to ensure their serviceability and sustainability. Optimal sensor placement is critical in the structural health monitoring system as the sensor configuration directly impacts the quality of collected data used for structural health diagnosis. Therefore, this study presents a comprehensive review of computational methodologies for optimal sensor placement in structural health monitoring. The problem formulation of optimal sensor placement is first introduced, including commonly used evaluation criteria for sensor configurations. Then, various existing optimization methodologies for sensor placement are summarized and introduced in detail, especially for the evolutionary algorithms and their improved variants. Finally, the suitability of computational methods for specific structural health monitoring applications is also discussed. The main goal of this study is to deliver a comprehensive reference of computational methodologies for optimal sensor placement in structural health monitoring studies and applications. This article is concluded by highlighting the most widely utilized evaluation criteria and optimization methodologies for sensor configuration determination.


2020 ◽  
Vol 10 (21) ◽  
pp. 7710
Author(s):  
Tsung-Yueh Lin ◽  
Jin Tao ◽  
Hsin-Haou Huang

The objective of optimal sensor placement in a dynamic system is to obtain a sensor layout that provides as much information as possible for structural health monitoring (SHM). Whereas most studies use only one modal assurance criterion for SHM, this work considers two additional metrics, signal redundancy and noise ratio, combining into three optimization objectives: Linear independence of mode shapes, dynamic information redundancy, and vibration response signal strength. A modified multiobjective evolutionary algorithm was combined with particle swarm optimization to explore the optimal solution sets. In the final determination, a multiobjective decision-making (MODM) strategy based on distance measurement was used to optimize the aforementioned objectives. We applied it to a reduced finite-element beam model of a reference building and compared it with other selection methods. The results indicated that MODM suitably balanced the objective functions and outperformed the compared methods. We further constructed a three-story frame structure for experimentally validating the effectiveness of the proposed algorithm. The results indicated that complete structural modal information can be effectively obtained by applying the MODM approach to identify sensor locations.


2013 ◽  
Vol 540 ◽  
pp. 47-54 ◽  
Author(s):  
Chun Li Wu ◽  
Han Bing Liu ◽  
Yan Li

A novel stabilization diagram method was presented for sensor placement in structural health monitoring of bridges. The aim of the method is to select the optimal locations which can achieve the best identification of modal frequencies and mode shapes. A single parents genetic algorithm was adopted to optimize the sensor locations from a set of coordinate positions. Five fitness functions taken as the objective function are proposed based on effective independence, modal assurance and modal energy criterion, in which the combined fitness functions can obtain more comprehensive properties to reduce the noise interference. The proposed method puts forward a universal way for sensor placement of the civil engineering structure. The effectiveness of the method was proved by a simply supported beam and a continuous beam bridge in the An Longquan interchange overpass.


Sign in / Sign up

Export Citation Format

Share Document