Comparison of Radiation Exposure Associated With Intraoperative Cone-Beam Computed Tomography and Follow-up Multidetector Computed Tomography Angiography for Evaluating Endovascular Aneurysm Repairs

2016 ◽  
Vol 23 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Andrea Steuwe ◽  
Philipp Geisbüsch ◽  
Christof J. Schulz ◽  
Dittmar Böckler ◽  
Hans-Ulrich Kauczor ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Kyungmin Lee ◽  
Gyu-Hyoung Lee

Abstract Background Radiographs are integral in evaluating implant space and inter-root distance. The purpose of this report is to introduce a method for evaluating the 3D root position with minimal radiation using a 3D tooth model composed of an intraoral-scanned crown and a cone-beam computed tomography (CBCT)-scanned root. Materials and methods Intraoral scan and CBCT scan of the patient were obtained before treatment. In the CBCT image, tooth segmentation was performed by isolating individual teeth from the maxillary and mandibular alveolar bone using software program. The 3D tooth model was fabricated by combining segmented individual teeth with the intraoral scan. Results A post-treatment intraoral scan was integrated into the tooth model, and the resulting position of the root could be predicted without additional radiographs. It is possible to monitor the root position after a pretreatment CBCT scan using a 3D tooth model without additional radiographs. Conclusion The application of the 3D tooth model benefits the patient by reducing repeated radiation exposure while providing the clinician with a precise treatment evaluation to monitor tooth movement.


Urolithiasis ◽  
2021 ◽  
Author(s):  
R. A. Kingma ◽  
M. J. H. Voskamp ◽  
B. H. J. Doornweerd ◽  
I. J. de Jong ◽  
S. Roemeling

AbstractCone beam computed tomography (CBCT) provides multiplanar cross-sectional imaging and three-dimensional reconstructions and can be used intraoperatively in a hybrid operating room. In this study, we investigated the feasibility of using a CBCT-scanner for detecting residual stones during percutaneous nephrolithotomy (PCNL). Intraoperative CBCT-scans were made during PCNL procedures from November 2018 until March 2019 in a university hospital. At the point where the urologist would have otherwise ended the procedure, a CBCT-scan was made to image any residual fragments that could not be detected by either nephroscopy or conventional C-arm fluoroscopy. Residual fragments that were visualized on the CBCT-scan were attempted to be extracted additionally. To evaluate the effect of this additional extraction, each CBCT-scan was compared with a regular follow-up CT-scan that was made 4 weeks postoperatively. A total of 19 procedures were analyzed in this study. The mean duration of performing the CBCT-scan, including preparation and interpretation, was 8 min. Additional stone extraction, if applicable, had a mean duration of 11 min. The mean effective dose per CBCT-scan was 7.25 mSv. Additional extraction of residual fragments as imaged on the CBCT-scan occurred in nine procedures (47%). Of the follow-up CT-scans, 63% showed a stone-free status as compared to 47% of the intraoperative CBCT-scans. We conclude that the use of CBCT for the detection of residual stones in PCNL is meaningful, safe, and feasible.


Sign in / Sign up

Export Citation Format

Share Document