Agreement between the 3-minute Psychomotor Vigilance Task (PVT) Embedded in a Wrist-worn Device and the Laptop-based PVT

Author(s):  
Panagiotis Matsangas ◽  
Nita Lewis Shattuck

The study assesses the agreement between the 3-minute version of the Psychomotor Vigilance Task (PVT) with an interstimulus interval (ISI) of 2 to 10 seconds and the validated 3-minute laptop-based PVT (ISI=1-4 seconds). The experiment utilized a randomized, within-subject, repeated-measures design with three factors (PVT device type, the backlight feature of the wrist-worn device, ambient lighting). Results show the differences in reaction times (RT) between devices are incrementally associated with the magnitude of the RTs. These differences tend to be in opposing directions when the backlight feature in the wrist-worn device is on. That is, RTs in the wrist-worn device tend to be faster compared to the laptop for (on average) faster individuals, whereas (on average) slower individuals tend to do better in the laptop compared to the wrist-worn device. The proportional bias introduced by the wrist-worn device compared to the laptop makes it difficult to translate individual RTs between different devices. The proportional bias, however, may work in favor for detecting differences between slow and fast RTs.

Author(s):  
Panagiotis Matsangas ◽  
Nita Lewis Shattuck ◽  
Katherine Mortimore ◽  
Christopher Paghasian ◽  
Frances Greene

The study assesses the utility of the 3-minute version of the Psychomotor Vigilance Task (PVT) embedded in a wrist-worn device (interstimulus interval – ISI =1 - 4 seconds) to detect changes in performance between a morning and an afternoon data collection session. The experiment utilized a randomized, within-subject, repeated-measures design with two factors, device type (wrist-worn PVT, laptop PVT, Go/No-Go task) and time of day (morning, afternoon). Results showed that performance in both the wrist-worn 3-minute PVT (ISI = 1 – 4 seconds) and the 5-minute Go/No-Go task (180 trials, 80% Go/20% No Go; ISI = 0.5 – 1.0 seconds) differed between the morning and the afternoon sessions but not the laptop-based PVT. We discuss these findings under the light of the differences in task characteristics between the wrist-worn and the laptop PVT


2020 ◽  
Vol 91 (5) ◽  
pp. 409-415
Author(s):  
Panagiotis Matsangas ◽  
Nita Lewis Shattuck

BACKGROUND: Given the challenges of collecting reliable Psychomotor Vigilance Task (PVT) data in the field, this study compared a 3-min PVT on a hand-held device and wrist-worn device vs. a standardized laptop.METHODS: The experiment utilized a randomized, repeated-measures design. Subjects (N = 36) performed the PVT on a touch-screen, hand-held device (HHD), a wrist-worn device (WWD), and a standardized laptop (L). Sleep was assessed using wrist-worn actigraphy.RESULTS: Compared to the L, the HHD was slower on average (∼50% longer reaction times; ∼34% slower response speeds; ∼600% more lapses in attention combined with false starts) and introduced a proportional bias that decreased the range of response speeds by 60%. Compared to the L, the WWD with the backlight on was faster on average (reaction time: ∼6%; response speed: ∼13%), but equivalent in lapses combined with false starts, and introduced a proportional bias that increased the range of responses by 60%.DISCUSSION: Compared to the L PVT, using a hand-held, touch screen interface to collect PVT data may introduce a large constant bias and a proportional bias that decreases the range of response speed. However, performance on the WWD closely mirrors performance on the L PVT and the proportional bias tends to be in favor of detecting individuals with slower responses. Researchers should avoid comparing PVT metrics between different device types. Reliability of PVT data from a WWD or HHD may be degraded when used in an operational setting with unpredictable environmental movement (such as a surface maritime setting).Matsangas P, Shattuck NL. Hand-held and wrist-worn field-based PVT devices vs. the standardized laptop PVT. Aerosp Med Hum Perform. 2020; 91(5):409–415.


2020 ◽  
Vol 6 (4) ◽  
pp. 00277-2020
Author(s):  
Samu Kainulainen ◽  
Brett Duce ◽  
Henri Korkalainen ◽  
Akseli Leino ◽  
Riku Huttunen ◽  
...  

ObjectivesBesides hypoxaemia severity, heart rate variability has been linked to cognitive decline in obstructive sleep apnoea (OSA) patients. Thus, our aim was to examine whether the frequency domain features of a nocturnal photoplethysmogram (PPG) can be linked to poor performance in the psychomotor vigilance task (PVT).MethodsPPG signals from 567 suspected OSA patients, extracted from Type 1 diagnostic polysomnography, and corresponding results of PVT were retrospectively examined. The frequency content of complete PPGs was determined, and analyses were conducted separately for men (n=327) and women (n=240). Patients were grouped into PVT performance quartiles based on the number of lapses (reaction times ≥500 ms) and within-test variation in reaction times. The best-performing (Q1) and worst-performing (Q4) quartiles were compared due the lack of clinical thresholds in PVT.ResultsWe found that the increase in arterial pulsation frequency (APF) in both men and women was associated with a higher number of lapses. Higher APF was also associated with higher within-test variation in men, but not in women. Median APF (β=0.27, p=0.01), time spent under 90% saturation (β=0.05, p<0.01), female sex (β=1.29, p<0.01), older age (β=0.03, p<0.01) and subjective sleepiness (β=0.07, p<0.01) were significant predictors of belonging to Q4 based on lapses. Only female sex (β=0.75, p<0.01) and depression (β=0.91, p<0.02) were significant predictors of belonging to Q4 based on the within-test variation.ConclusionsIn conclusion, increased APF in PPG provides a possible polysomnography indicator for deteriorated vigilance especially in male OSA patients. This finding highlights the connection between cardiorespiratory regulation, vigilance and OSA. However, our results indicate substantial sex-dependent differences that warrant further prospective studies.


Author(s):  
Lucia Arsintescu ◽  
Jeffrey B. Mulligan ◽  
Erin E. Flynn-Evans

Objective: Our goals were to compare three techniques for performing a psychomotor vigilance task (PVT) on a touch screen device (fifth-generation iPod) and to determine the device latency. Background: The PVT is a reaction-time test that is sensitive to sleep loss and circadian misalignment. Several PVT tests have been developed for touch screen devices, but unlike the standard PVT developed for laboratory use, these tests allow for touch responses to be recorded at any location on the device, with contact from any finger. In addition, touch screen devices exhibit latency in processing time between the touch response and the time registered by the device. Method: Thirteen participants completed a 5-min PVT on a touch screen device held in three positions (on a table with index finger, handheld portrait with index finger, handheld landscape with thumb). We compared reaction-time outcomes in each orientation condition using paired t tests. We recorded the first session using a high-speed video camera to determine the latency between the touch response and the documented response time. Results: The participants had significantly faster reaction times in the landscape-oriented position using the thumb, compared with the portrait-oriented position using the index ( M = 224.13 and M = 244.26, p = .045). Using data from 1,241 unique touch events, we found a mean device latency of 68.53 ms that varied highly between individuals. Conclusion: Device orientation and device latency should be considered when using a touch screen version of a PVT. Application: Our findings apply to researchers administering touch screen versions of the PVT.


2004 ◽  
Vol 80 (5) ◽  
pp. 695-701 ◽  
Author(s):  
Peter Graw ◽  
Kurt Kräuchi ◽  
Vera Knoblauch ◽  
Anna Wirz-Justice ◽  
Christian Cajochen

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3758
Author(s):  
Ryan Sowinski ◽  
Drew Gonzalez ◽  
Dante Xing ◽  
Choongsung Yoo ◽  
Victoria Jenkins ◽  
...  

Inositol stabilized arginine silicate (ASI) ingestion has been reported to increase nitric oxide levels while inositol (I) has been reported to enhance neurotransmission. The current study examined whether acute ASI + I (Inositol-enhanced bonded arginine silicate) ingestion affects cognitive function in e-sport gamers. In a double blind, randomized, placebo controlled, and crossover trial, 26 healthy male (n = 18) and female (n = 8) experienced gamers (23 ± 5 years, 171 ± 11 cm, 71.1 ± 14 kg, 20.7 ± 3.5 kg/m2) were randomly assigned to consume 1600 mg of ASI + I (nooLVL®, Nutrition 21) or 1600 mg of a maltodextrin placebo (PLA). Prior to testing, participants recorded their diet, refrained from consuming atypical amounts of stimulants and foods high in arginine and nitrates, and fasted for 8 h. During testing sessions, participants completed stimulant sensitivity questionnaires and performed cognitive function tests (i.e., Berg-Wisconsin Card Sorting task test, Go/No-Go test, Sternberg Task Test, Psychomotor Vigilance Task Test, Cambridge Brain Sciences Reasoning and Concentration test) and a light reaction test. Participants then ingested treatments in a randomized manner. Fifteen minutes following ingestion, participants repeated tests (Pre-Game). Participants then played their favorite video game for 1-h and repeated the battery of tests (Post-Game). Participants observed a 7–14-day washout period and then replicated the study with the alternative treatment. Data were analyzed by General Linear Model (GLM) univariate analyses with repeated measures using weight as a covariate, paired t-tests (not adjusted to weight), and mean changes from baseline with 95% Confidence Intervals (CI). Pairwise comparison revealed that there was a significant improvement in Sternberg Mean Present Reaction Time (ASI + I vs. PLA; p < 0.05). In Post-Game assessments, 4-letter Absent Reaction Time (p < 0.05), 6-letter Present Reaction Time (p < 0.01), 6-letter Absent Reaction Time (p < 0.01), Mean Present Reaction Time (p < 0.02), and Mean Absent Reaction Time (p < 0.03) were improved with ASI + I vs. PLA. There was a non-significant trend in Pre-Game Sternberg 4-letter Present Reaction time in ASI + I vs. PLA (p < 0.07). ASI + I ingestion better maintained changes in Go/No-Go Mean Accuracy and Reaction Time, Psychomotor Vigilance Task Reaction Time, and Cambridge Post-Game Visio-spatial Processing and Planning. Results provide evidence that ASI + I ingestion prior to playing video games may enhance some measures of short-term and working memory, reaction time, reasoning, and concentration in experienced gamers.


2017 ◽  
Vol 22 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Takuro Kitamura ◽  
Soichiro Miyazaki ◽  
Hiroshi Kadotani ◽  
Takashi Kanemura ◽  
Harun Bin Sulaiman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document