constant bias
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 2086 (1) ◽  
pp. 012030
Author(s):  
O O Permyakova ◽  
A E Rogozhin

Abstract In order to understand changes in defect concentration during the electroforming process, we modelled the electroforming process in Ta/HfO2/Pt under constant bias voltage. For this purpose, kinetic Monte-Carlo and finite element methods were utilized. Vacancy profiles were obtained for forming voltages from 3 V to 5 V; modelling of lower stresses is time-consuming. It was found that with decreasing voltage, vacancies begin to accumulate near the inert electrode. When the voltage was dropped from 5 to 3 V, the thickness of such a layer increased by 1 nm, and electroforming time exponentially increase.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Laurent Bitker ◽  
Nadja Cristinne Carvalho ◽  
Sascha Reidt ◽  
Christoph Schranz ◽  
Dominik Novotni ◽  
...  

Abstract Background Personalizing mechanical ventilation requires the development of reliable bedside monitoring techniques. The multiple-breaths nitrogen washin–washout (MBNW) technique is currently available to measure end-expiratory lung volume (EELVMBNW), but the precision of the technique may be poor, with percentage errors ranging from 28 to 57%. The primary aim of the study was to evaluate the reliability of a novel MBNW bedside system using fast mainstream sensors to assess EELV in an experimental acute respiratory distress syndrome (ARDS) model, using computed tomography (CT) as the gold standard. The secondary aims of the study were: (1) to evaluate trending ability of the novel system to assess EELV; (2) to evaluate the reliability of estimated alveolar recruitment induced by positive end-expiratory pressure (PEEP) changes computed from EELVMBNW, using CT as the gold standard. Results Seven pigs were studied in 6 experimental conditions: at baseline, after experimental ARDS and during a decremental PEEP trial at PEEP 16, 12, 6 and 2 cmH2O. EELV was computed at each PEEP step by both the MBNW technique (EELVMBNW) and CT (EELVCT). Repeatability was assessed by performing replicate measurements. Alveolar recruitment between two consecutive PEEP levels after lung injury was measured with CT (VrecCT), and computed from EELV measurements (VrecMBNW) as ΔEELV minus the product of ΔPEEP by static compliance. EELVMBNW and EELVCT were significantly correlated (R2 = 0.97). An acceptable non-constant bias between methods was identified, slightly decreasing toward more negative values as EELV increased. The conversion equation between EELVMBNW and EELVCT was: EELVMBNW = 0.92 × EELVCT + 36. The 95% prediction interval of the bias amounted to ± 86 mL and the percentage error between both methods amounted to 13.7%. The median least significant change between repeated measurements amounted to 8% [CI95%: 4–10%]. EELVMBNW adequately tracked EELVCT changes over time (concordance rate amounting to 100% [CI95%: 87%–100%] and angular bias amounting to − 2° ± 10°). VrecMBNW and VrecCT were significantly correlated (R2 = 0.92). A non-constant bias between methods was identified, slightly increasing toward more positive values as Vrec increased. Conclusions We report a new bedside MBNW technique that reliably assesses EELV in an experimental ARDS model with high precision and excellent trending ability.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1754
Author(s):  
Edward B. Rayburn

Mathematical models have many uses. When input data is limited, simple models are required. This occurs in pasture agriculture when managers typically only have access to temperature and rainfall values. A simple pasture growth model was developed that requires only latitude and daily maximum and minimum temperature and rainfall. The accuracy of the model was validated using ten site-years of measured pasture growth at a site under continuous stocking where management controlled the height of grazing (HOG) and a site under rotational stocking at a West Virginia University farm (WVU). Relative forage growth, expressed as a fraction of maximum growth observed at the sites, was reasonably accurate. At the HOG site constant bias in relative growth was not different from zero. There was a year effect due to the weather station used for predicting growth at HOG being 1.8 km from the pasture. However, the error was only about 10-percent. At the WVU site constant bias for relative growth was not different from zero and year effect was eliminated when adjusted for nitrogen status of the treatments. This simple model described relative pasture growth within 10-percent of average for a given site, environment, and management using only daily weather inputs that are readily available. Using predictions of climate change impact on temperature and rainfall frequency and intensity this model can be used to predict the impact on pasture growth.


2021 ◽  
Author(s):  
Emerson Medeiros Del Ponte ◽  
Luis Ignacio Cazón ◽  
Kaique Santos Alves ◽  
Sarah J. Pethybridge ◽  
Clive H. Bock

Plant disease severity is commonly estimated visually without or with the aid of standard area diagram sets (SADs). It is generally believed that the use of SADs leads to less biased (more accurate) and thus more precise estimates, but the degree of improvement has not been characterized in a systematic manner. We built on a previous review and screened 153 SAD studies published from 1990 to 2021. A systematic review resulted in a selection of 72 studies that reported three linear regression statistics for individual raters, which are indicative of the two components of bias (intercept = constant bias; slope = systematic bias) and precision (Pearson's correlation coefficient, r), to perform a meta-analysis of these accuracy components. The meta-analytic model determined an overall gain of 0.07 (r increased from 0.88 to 0.95) in precision. Globally, there was a reduction of 2.65 units in the intercept, from 3.41 to 0.76, indicating a reduction in the constant bias. Slope was least affected and was reduced slightly from 1.09 to 0.966, indicating marginally less systematic bias when using SADs. A multiple correspondence analysis suggested an association of less accurate, unaided estimates with diseases that produce numerous lesions and for which maximum severities of 50% are rarely attained. On the other hand, more accurate estimates were observed with diseases that cause only a few lesions and those diseases where the lesions coalesce and occupy more than 50% of the specimen surface. This was most pronounced for specimen types other than leaves. By quantitatively exploring how characteristics of the pathosystem and how SADs affect precision and constant and systematic biases, we affirm the value of SADs for reducing bias and imprecision of visual assessments. We have also identified situations where SADs have greater or lesser effects as an assessment aid.


2021 ◽  
Vol 13 (11) ◽  
pp. 2196
Author(s):  
Frédéric Frappart ◽  
Fabien Blarel ◽  
Ibrahim Fayad ◽  
Muriel Bergé-Nguyen ◽  
Jean-François Crétaux ◽  
...  

Radar altimetry is now commonly used to provide long-term monitoring of inland water levels in complement to or for replacing disappearing in situ networks of gauge stations. Recent improvements in tracking and acquisition modes improved the quality the water retrievals. The newly implemented Open Loop mode is likely to increase the number of monitored water bodies owing to the use of an a priori elevation, especially in hilly and mountainous areas. The novelty of this study is to provide a comprehensive evaluation of the performances of the past and current radar altimetry missions according to their acquisition (Low Resolution Mode or Synthetic Aperture Radar) and tracking (close or open loop) modes, and acquisition frequency (Ku or Ka) in a mountainous area where tracking losses of the signal are likely to occur, as well as of the recently launched ICESat-2 and GEDI lidar missions. To do so, we evaluate the quality of water level retrievals from most radar altimetry missions launched after 1995 over eight lakes in Switzerland, using the recently developed ALtimetry Time Series software, to compare the performances of the new tracking and acquisition modes and also the impact of the frequency used. The combination of the Open Loop tracking mode with the Synthetic Aperture Radar acquisition mode on SENTINEL-3A and B missions outperforms the classical Low Resolution Mode of the other missions with a lake observability greater than 95%, an almost constant bias of (−0.17 ± 0.04) m, a RMSE generally lower than 0.07 m and a R most of the times higher than 0.85 when compared to in situ gauge records. To increase the number of lakes that can be monitored and the temporal sampling of the water level retrievals, data acquired by lidar altimetry missions were also considered. Very accurate results were also obtained with ICESat-2 data with RMSE lower than 0.06 and R higher than 0.95 when compared to in situ water levels. An almost constant bias (0.42 ± 0.03) m was also observed. More contrasted results were obtained using GEDI. As these data were available on a shorter time period, more analyses are necessary to determine their potential for retrieving water levels.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1042
Author(s):  
Muhammad Hussain ◽  
Woonyoung Jeong ◽  
Il-Suk Kang ◽  
Kyeong-Keun Choi ◽  
Syed Hassan Abbas Jaffery ◽  
...  

Herein, the fabrication of a novel highly sensitive and fast hydrogen (H2) gas sensor, based on the Ta2O5 Schottky diode, is described. First, Ta2O5 thin films are deposited on silicon carbide (SiC) and silicon (Si) substrates via a radio frequency (RF) sputtering method. Then, Pd and Ni are respectively deposited on the front and back of the device. The deposited Pd serves as a H2 catalyst, while the Ni functions as an Ohmic contact. The devices are then tested under various concentrations of H2 gas at operating temperatures of 300, 500, and 700 °C. The results indicate that the Pd/Ta2O5 Schottky diode on the SiC substrate exhibits larger concentration and temperature sensitivities than those of the device based on the Si substrate. In addition, the optimum operating temperature of the Pd/Ta2O5 Schottky diode for use in H2 sensing is shown to be about 300 °C. At this optimum temperature, the dynamic responses of the sensors towards various concentrations of H2 gas are then examined under a constant bias current of 1 mA. The results indicate a fast rise time of 7.1 s, and a decay of 18 s, for the sensor based on the SiC substrate.


This paper describes a new CMOS realization of differential difference current conveyor circuit. The proposed design offers enhanced characteristics compared to DDCC circuits previously exhibited in the literature. It is characterized by a wide dynamic range with good accuracy thanks to use of adaptive biasing circuit instead of a constant bias current source as well as a wide bandwidth (560 MHz) and a low parasitic resistance at terminal X about 6.86 Ω. A voltage mode instrumentation amplifier circuit (VMIA) composed of a DDCC circuit and two active grounded resistances is shown as application. The proposed VMIA circuit is intended for high frequency applications. This configuration offers significant improvement in accuracy as compared to the state of the art. It is characterized by a controllable gain, a large dynamic range with THD less than 0.27 %, a low noise density (22 nV/Hz1/2) with a power consumption about 0.492 mW and a wide bandwidth nearly 83 MHz. All proposed circuits are simulated by TSPICE using CMOS 0.18 μm TSMC technology with ± 0.8 V supply voltage to verify the theoretical results.


2020 ◽  
Vol 30 (15) ◽  
pp. 2030046
Author(s):  
Ivan Skhem Sawkmie ◽  
Mangal C. Mahato

The nonlinear dynamics of an underdamped sinusoidal potential system is experimentally and numerically studied. The system shows regular (nonchaotic) periodic motion when driven by a small amplitude ([Formula: see text]) sinusoidal force (frequency [Formula: see text]). However, when the system is driven by a similarly small amplitude biharmonic force (frequencies [Formula: see text] and [Formula: see text] with amplitudes [Formula: see text] and [Formula: see text], respectively) chaotic motion appear as a function of amplitude ([Formula: see text]) of the [Formula: see text]-frequency component for a fixed [Formula: see text]. We investigate the effect of an additional constant force [Formula: see text] on the dynamics of the system in the ([Formula: see text]) space. We find that [Formula: see text] can cause chaotic motion to move to regular motion and regular motion can also become chaotic in certain ([Formula: see text]) domains.


Sign in / Sign up

Export Citation Format

Share Document