scholarly journals Cold pain sensitivity is associated with single-nucleotide polymorphisms of PAR2/F2RL1 and TRPM8

2021 ◽  
Vol 17 ◽  
pp. 174480692110020
Author(s):  
Moe Soeda ◽  
Seii Ohka ◽  
Daisuke Nishizawa ◽  
Junko Hasegawa ◽  
Kyoko Nakayama ◽  
...  

Pain sensitivity differs individually, but the mechanisms and genetic factors that underlie these differences are not fully understood. To investigate genetic factors that are involved in sensing cold pain, we applied a cold-induced pain test and evaluated protease-activated receptor 2 (PAR2/F2RL1) and transient receptor potential melastatin 8 (TRPM8), which are related to pain. We statistically investigated the associations between genetic polymorphisms and cold pain sensitivity in 461 healthy patients who were scheduled to undergo cosmetic orthognathic surgery for mandibular prognathism. We found an association between cold pain sensitivity and the rs2243057 polymorphism of the PAR2 gene. We also found a significant association between cold pain sensitivity and the rs12992084 polymorphism of the TRPM8 gene. Carriers of the minor A allele of the rs2243057 polymorphism of PAR2 and minor C allele of the rs12992084 polymorphism of TRPM8 exhibited a longer latency to pain perception in the cold-induced pain test, reflecting a decrease in cold pain sensitivity. These results suggest that genetic polymorphisms of both PAR2 and TRPM8 are involved in individual differences in cold pain sensitivity.

Mycoses ◽  
2020 ◽  
Vol 63 (6) ◽  
pp. 579-587
Author(s):  
Ying‐Kui Jiang ◽  
Rui‐Ying Wang ◽  
Xuan Wang ◽  
Hua‐Zhen Zhao ◽  
Ling‐Hong Zhou ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 154-164 ◽  
Author(s):  
Carlos Fernández-Peña ◽  
Felix Viana

Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel activated by cold temperature and cooling agents. TRPM8 is expressed in peripheral cold thermoreceptors and plays a fundamental role in sensing mild, cool temperatures. In addition, cumulative evidence obtained in humans and different animals models, combined with pharmacological and gene silencing techniques, suggest that TRPM8 may also play a role in cold discomfort and the pathophysiology of cold pain. This article reviews the available evidence in a critical fashion. In addition, the article reviews the possible role of TRPM8 in basal tearing, cold urticaria and airway irritation. Collectively, these results suggest that pharmacological modulators of TRPM8 could have potential indications in a variety of conditions, including dry eye disease, airway irritation, teeth hypersensitivity, migraine and neuropathic pain. However, additional studies, especially in humans, are needed to verify these preliminary observations. The paucity of potent, specific pharmacological TRPM8 antagonists available is a current limitation for further progress in this field.


2020 ◽  
Vol 21 (10) ◽  
pp. 985-992 ◽  
Author(s):  
Koichi Inoue ◽  
Zhi-Gang Xiong ◽  
Takatoshi Ueki

: Transient receptor potential melastatin 7 (TRPM7), along with the closely related TRPM6, are unique channels that have dual operations: cation permeability and kinase activity. In contrast to the limited tissue distribution of TRPM6, TRPM7 is widely expressed among tissues and is therefore implicated in a variety of cellular functions physiologically and pathophysiologically. The discovery of TRPM7’s unique structure imparting dual ion channel and kinase activities shed light onto novel and peculiar biological functions, such as Mg2+ homeostasis, cellular Ca2+ flickering, and even intranuclear transcriptional regulation by a cleaved kinase domain translocated to nuclei. Interestingly, at a higher level, TRPM7 participates in several biological processes in the nervous and cardiovascular systems, in which excitatory responses in neurons and cardiomyocytes are critical for their function. Here, we review the roles of TRPM7 in cells involved in the nervous and cardiovascular systems and discuss its potential as a future therapeutic target.


2020 ◽  
Vol 17 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Pavan Thapak ◽  
Mahendra Bishnoi ◽  
Shyam S. Sharma

Background: Diabetes is a chronic metabolic disorder affecting the central nervous system. A growing body of evidence has depicted that high glucose level leads to the activation of the transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach. Objective: The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate (2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment. Methods: Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were randomly divided into the treatment group, model group and age-matched control and pre se group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction and the hippocampus and cortex were isolated. After that, protein and mRNA expression study was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex. Results: : Our study showed the 10th week diabetic animals developed cognitive impairment, which was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2 mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex. However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95). Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF) were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9), CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic animals. Conclusion: : This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes- induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced cognitive impairment.


Pancreatology ◽  
2019 ◽  
Vol 19 ◽  
pp. S94
Author(s):  
Júlia Fanczal ◽  
Petra Pallagi ◽  
Marietta Görög ◽  
Csaba Péter Bíró ◽  
Tamara Madácsy ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 147
Author(s):  
Yu Fu ◽  
Peng Shang ◽  
Bo Zhang ◽  
Xiaolong Tian ◽  
Ruixue Nie ◽  
...  

In animals, muscle growth is a quantitative trait controlled by multiple genes. Previously, we showed that the transient receptor potential channel 1 (TRPC1) gene was differentially expressed in muscle tissues between pig breeds with divergent growth traits base on RNA-seq. Here, we characterized TRPC1 expression profiles in different tissues and pig breeds and showed that TRPC1 was highly expressed in the muscle. We found two single nucleotide polymorphisms (SNPs) (C-1763T and C-1604T) in TRPC1 that could affect the promoter region activity and regulate pig growth rate. Functionally, we used RNAi and overexpression to illustrate that TRPC1 promotes myoblast proliferation, migration, differentiation, fusion, and muscle hypertrophy while inhibiting muscle degradation. These processes may be mediated by the activation of Wnt signaling pathways. Altogether, our results revealed that TRPC1 might promote muscle growth and development and plays a key role in Wnt-mediated myogenesis.


2021 ◽  
Vol 34 (1) ◽  
pp. 121-122
Author(s):  
Yi-quan Dai ◽  
Xiao-xiao Yan ◽  
Yi-chen Lin ◽  
Hong-yu Chen ◽  
Xiao-ru Liu

Abstract Background To investigate the function of transient receptor potential melastatin 2 (TRPM2) in vascular reactivity induced by 5-hydroxytryptamine (5-HT) in the aorta during development of atherosclerosis in mice. Methods Forty mice were randomly divided into 4 groups: C57BL/6J on normal diet (C57 + ND), C57BL/6J on high-fat diet (C57 + HFD), apolipoprotein E gene knockout mice (ApoE−/−) on ND (ApoE−/− + ND), and ApoE−/− on HFD (ApoE−/− + HFD). They were fed with a ND or HFD for 16 weeks. Aortic TRPM2 expression and isometric contractions were analyzed. Results In the ApoE−/− + HFD group, body weight, blood glucose, and blood lipid concentrations were increased, and aortic plaques were developed. Compared with the other 3 groups, aortic TRPM2 mRNA and protein levels were significantly increased in the ApoE−/− + HFD group (P < 0.01). Aortic reactivity to 5-HT was enhanced in ApoE−/− + HFD mice with lower EC50 values. The enhanced reactivity to 5-HT was significantly inhibited by TRPM2 inhibitors, N-p-amylcinnamoyl anthranilic acid (1 µmol/l) and 2-aminoethyl diphenylborinate (10 µmol/l). Conclusions Aortic TRPM2 expression is upregulated in ApoE knockout mice fed with a HFD. Upregulation of TRPM2 enhances 5-HT vascular reactivity during development of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document