Synthesis of novel chiral fluorescent sensors and their application in enantioselective discrimination of chiral carboxylic acids

2019 ◽  
Vol 43 (9-10) ◽  
pp. 340-346 ◽  
Author(s):  
Qiuhan Yu ◽  
Weiwen Lu ◽  
Zhiqiang Ding ◽  
Min Wei ◽  
Zhenya Dai

Novel chiral fluorescent sensors are synthesized from a dibromide containing a tetraphenylethylene moiety and enantiomerically pure amino alcohols and an amine. The sensors are applied for the chiral recognition of a wide range of chiral carboxylic acids and related derivatives.

2020 ◽  
Author(s):  
Kiron Kumar Ghosh ◽  
Alexander Uttry ◽  
Francesca Ghiringhelli ◽  
Arup Mondal ◽  
Manuel van Gemmeren

We report the ligand enabled C(sp3)–H activation/olefination of free carboxylic acids in the γ-position. Through an intramolecular Michael-addition, δ-lactones are obtained as products. Two distinct ligand classes are identified that enable the challenging palladium-catalyzed activation of free carboxylic acids in the γ-position. The developed protocol features a wide range of acid substrates and olefin reaction partners and is shown to be applicable on a preparatively useful scale. Insights into the underlying reaction mechanism obtained through kinetic studies are reported.<br>


2019 ◽  
Author(s):  
Samir Messaoudi ◽  
Nedjwa Bennai ◽  
Amelie Chabrier ◽  
Maha Fatthalla ◽  
Expédite Yen-Pon ◽  
...  

We have discovered a new mode of reactivity of 1-thiosugars in the presence of Cu(II) or Co(II) for a stereoselective <i>O</i>-glycosylation reaction. The process involves the use of a catalytic amount of Cu(acac)2 or Co(acac)2 and Ag2CO3 as an oxidant in α,α,α-trifluorotoluene (TFT). Moreover, this protocol turned out to have a broad scope, allowing to prepare a wide range of com-plex substituted <i>O</i>-glycoside esters in good to excellent yields with an exclusive β-selectivity. The late-stage modification of phar-maceuticals by this method was also demonstrated.


2020 ◽  
Vol 24 (8) ◽  
pp. 900-908
Author(s):  
Ram Naresh Yadav ◽  
Amrendra K Singh ◽  
Bimal Banik

Numerous O (oxa)- and S (thia)-glycosyl esters and their analogous glycosyl acids have been accomplished through stereoselective glycosylation of various peracetylated bromo sugar with benzyl glycolate using InBr3 as a glycosyl promotor followed by in situ hydrogenolysis of resulting glycosyl ester. A tandem glycosylating and hydrogenolytic activity of InBr3 has been successfully investigated in a one-pot procedure. The resulting synthetically valuable and virtually unexplored class of β-CMGL (glycosyl acids) could serve as an excellent potential chiral auxiliary in the asymmetric synthesis of a wide range of enantiomerically pure medicinally prevalent β-lactams and other bioactive molecules of diverse medicinal interest.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunyun Ning ◽  
Shuaishuai Wang ◽  
Muzi Li ◽  
Jie Han ◽  
Chengjian Zhu ◽  
...  

AbstractDevelopment of catalytic amide bond-forming methods is important because they could potentially address the existing limitations of classical methods using superstoichiometric activating reagents. In this paper, we disclose an Umpolung amidation reaction of carboxylic acids with nitroarenes and nitroalkanes enabled by the triplet synergistic catalysis of FeI2, P(V)/P(III) and photoredox catalysis, which avoids the production of byproducts from stoichiometric coupling reagents. A wide range of carboxylic acids, including aliphatic, aromatic and alkenyl acids participate smoothly in such reactions, generating structurally diverse amides in good yields (86 examples, up to 97% yield). This Umpolung amidation strategy opens a method to address challenging regioselectivity issues between nucleophilic functional groups, and complements the functional group compatibility of the classical amidation protocols. The synthetic robustness of the reaction is demonstrated by late-stage modification of complex molecules and gram-scale applications.


2014 ◽  
Vol 79 (15) ◽  
pp. 6775-6782 ◽  
Author(s):  
Gastón Silveira-Dorta ◽  
Osvaldo J. Donadel ◽  
Víctor S. Martín ◽  
José M. Padrón

2021 ◽  
Author(s):  
Alexander Uttry ◽  
Sourjya Mal ◽  
Manuel van Gemmeren

Carboxylic acid moieties are highly abundant in bioactive molecules. In this study we describe the late-stage β-C(sp<sup>3</sup>)–H deuteration of free carboxylic acids. Based on our finding that the C–H activation with our catalyst systems is reversible, the de-deuteration process was first optimized. The resulting conditions involve ethylenediamine-based ligands, which, amongst other positions, for the first time enables the functionalization of non-activated methylene β-C(sp<sup>3</sup>)–H bonds and can be used to achieve the desired deuteration when using a deuterated solvent. The reported method allows for the functionalization of a wide range of free carboxylic acids with diverse substitution patterns, as well as the late-stage deuteration of bioactive molecules and related frameworks.


Sign in / Sign up

Export Citation Format

Share Document