Multiple sclerosis: prevalence of the ‘central vein’ sign in white matter lesions on gadolinium-enhanced susceptibility-weighted images

2021 ◽  
pp. 197140092110087
Author(s):  
Gianvincenzo Sparacia ◽  
Francesco Agnello ◽  
Alberto Iaia ◽  
Aurelia Banco ◽  
Massimo Galia ◽  
...  

Aims To evaluate prospectively whether an intravenous gadolinium injection could improve the detection of the central vein sign on susceptibility-weighted imaging sequences obtained with a 1.5 T magnetic resonance scanner in patients with multiple sclerosis compared to unenhanced susceptibility-weighted images. Materials and methods This prospective, institution review board-approved study included 19 patients affected by multiple sclerosis (six men; 13 women; mean age 40.8 years, range 20–74 years). Patients had the relapsing–remitting clinical subtype in 95% of cases, and only one (5%) patient had the primary progressive clinical subtype of multiple sclerosis. T2-weighted images, fluid-attenuated inversion recovery images, unenhanced and contrast-enhanced susceptibility-weighted images were evaluated in consensus by two neuroradiologists for the presence of the central vein sign. The readers were blinded to magnetic resonance imaging reports, clinical information, the presence and the localisation of focal hyperintense white matter lesions. Any discordance between readers was resolved through a joint review of the recorded images with an additional neuroradiologist. Results A total of 317 multiple sclerosis lesions were analysed. The central vein sign had a higher prevalence detection rate on gadolinium-enhanced susceptibility-weighted images (272 of 317 lesions, 86%) compared to unenhanced susceptibility-weighted images (172 of 317 lesions, 54%). Conclusion Gadolinium-enhanced susceptibility-weighted imaging improves the detection rate of the central vein sign in multiple sclerosis lesions.

2016 ◽  
Vol 22 (10) ◽  
pp. 1289-1296 ◽  
Author(s):  
Niraj Mistry ◽  
Rasha Abdel-Fahim ◽  
Amal Samaraweera ◽  
Olivier Mougin ◽  
Emma Tallantyre ◽  
...  

Background: White matter lesions are frequently detected using brain magnetic resonance imaging (MRI) performed for various indications. Most are microangiopathic, but demyelination, including multiple sclerosis (MS), is an important cause; conventional MRI cannot always distinguish between these pathologies. The proportion of lesions with a central vein on 7-T T2*-weighted MRI prospectively distinguishes demyelination from microangiopathic lesions. Objective: To test whether 3-T T2*-weighted MRI can differentiate MS from microangiopathic brain lesions. Methods: A total of 40 patients were studied. Initially, a test cohort of 10 patients with MS and 10 patients with microangiopathic white matter lesions underwent 3-T T2*-weighted brain MRI. Anonymised scans were analysed blind to clinical data, and simple diagnostic rules were devised. These rules were applied to a validation cohort of 20 patients (13 with MS and 7 with microangiopathic lesions) by a blinded observer. Results: Within the test cohort, all patients with MS had central veins visible in >45% of brain lesions, while the rest had central veins visible in <45% of lesions. By applying diagnostic rules to the validation cohort, all remaining patients were correctly categorised. Conclusion: 3-T T2*-weighted brain MRI distinguishes perivenous MS lesions from microangiopathic lesions. Clinical application of this technique could supplement existing diagnostic algorithms.


2018 ◽  
Vol 31 (4) ◽  
pp. 356-361 ◽  
Author(s):  
Gianvincenzo Sparacia ◽  
Francesco Agnello ◽  
Angelo Gambino ◽  
Martina Sciortino ◽  
Massimo Midiri

Purpose The aim of this study was to determine the occurrence and distribution of the ‘central vein’ sign in white matter lesions on susceptibility-weighted magnetic resonance images in patients with multiple sclerosis (MS) and cerebral small vessel disease (CSVD). Materials and methods T2-weighted and fluid-attenuated inversion recovery magnetic resonance images of 19 MS patients and 19 patients affected by CSVD were analysed for the presence and localisation of focal hyperintense white matter lesions. Lesions were subdivided into periventricular or non-periventricular (juxtacortical, subcortical, deep white matter and cerebellar) distributed. The number and localisation of lesions presenting with the central vein sign were recorded and compared between MS and CSVD lesions. Results A total of 313 MS patients and 75 CSVD lesions were identified on T2-weighted and fluid-attenuated inversion recovery magnetic resonance images. The central vein sign was found in 128 MS lesions (40.9%), and the majority of them (71/128, 55.5%) had a periventricular distribution. The central vein sign was found in 22 out of 75 (29.3%) CSVD lesions, and periventricular distribution was seen in six out of 22 (27.2%) CSVD lesions. The difference in the proportion of white matter hyperintense lesions that presented with the central vein sign on susceptibility-weighted images in patients with MS and CSVD was statistically different, and a significantly higher number of MS patients presented with lesions with the central vein sign compared to CSVD patients. Conclusion The presence of the central vein sign on susceptibility-weighted images for MS lesions improves the understanding of the periventricular distribution of MS lesions and could contribute as adjunctive diagnostic criteria for MS disease.


2010 ◽  
Vol 53 (5) ◽  
pp. 311-317 ◽  
Author(s):  
Nina Lummel ◽  
Tobias Boeckh-Behrens ◽  
Veronika Schoepf ◽  
Michael Burke ◽  
Hartmut Brückmann ◽  
...  

Brain ◽  
2020 ◽  
Author(s):  
Ermelinda De Meo ◽  
Loredana Storelli ◽  
Lucia Moiola ◽  
Angelo Ghezzi ◽  
Pierangelo Veggiotti ◽  
...  

Abstract The thalamus represents one of the first structures affected by neurodegenerative processes in multiple sclerosis. A greater thalamic volume reduction over time, on its CSF side, has been described in paediatric multiple sclerosis patients. However, its determinants and the underlying pathological changes, likely occurring before this phenomenon becomes measurable, have never been explored. Using a multiparametric magnetic resonance approach, we quantified, in vivo, the different processes that can involve the thalamus in terms of focal lesions, microstructural damage and atrophy in paediatric multiple sclerosis patients and their distribution according to the distance from CSF/thalamus interface and thalamus/white matter interface. In 70 paediatric multiple sclerosis patients and 26 age- and sex-matched healthy controls, we tested for differences in thalamic volume and quantitative MRI metrics—including fractional anisotropy, mean diffusivity and T1/T2-weighted ratio—in the whole thalamus and in thalamic white matter, globally and within concentric bands originating from CSF/thalamus interface. In paediatric multiple sclerosis patients, the relationship of thalamic abnormalities with cortical thickness and white matter lesions was also investigated. Compared to healthy controls, patients had significantly increased fractional anisotropy in whole thalamus (f2 = 0.145; P = 0.03), reduced fractional anisotropy (f2 = 0.219; P = 0.006) and increased mean diffusivity (f2 = 0.178; P = 0.009) in thalamic white matter and a trend towards a reduced thalamic volume (f2 = 0.027; P = 0.058). By segmenting the whole thalamus and thalamic white matter into concentric bands, in paediatric multiple sclerosis we detected significant fractional anisotropy abnormalities in bands nearest to CSF (f2 = 0.208; P = 0.002) and in those closest to white matter (f2 range = 0.183–0.369; P range = 0.010–0.046), while we found significant mean diffusivity (f2 range = 0.101–0.369; P range = 0.018–0.042) and T1/T2-weighted ratio (f2 = 0.773; P = 0.001) abnormalities in thalamic bands closest to CSF. The increase in fractional anisotropy and decrease in mean diffusivity detected at the CSF/thalamus interface correlated with cortical thickness reduction (r range = −0.27–0.34; P range = 0.004–0.028), whereas the increase in fractional anisotropy detected at the thalamus/white matter interface correlated with white matter lesion volumes (r range = 0.24–0.27; P range = 0.006–0.050). Globally, our results support the hypothesis of heterogeneous pathological processes, including retrograde degeneration from white matter lesions and CSF-mediated damage, leading to thalamic microstructural abnormalities, likely preceding macroscopic tissue loss. Assessing thalamic microstructural changes using a multiparametric magnetic resonance approach may represent a target to monitor the efficacy of neuroprotective strategies early in the disease course.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chong Hyun Suh ◽  
Sang Joon Kim ◽  
Seung Chai Jung ◽  
Choong Gon Choi ◽  
Ho Sung Kim

AbstractWe aimed to evaluate the pooled incidence of central vein sign on T2*-weighted images from patients with multiple sclerosis (MS), and to determine the diagnostic performance of this central vein sign for differentiating MS from other white matter lesions and provide an optimal cut-off value. A computerized systematic search of the literature in PUBMED and EMBASE was conducted up to December 14, 2018. Original articles investigating central vein sign on T2*-weighted images of patients with MS were selected. The pooled incidence was obtained using random-effects model. The pooled sensitivity and specificity were obtained using a bivariate random-effects model. An optimal cut-off value for the proportion of lesions with a central vein sign was calculated from those studies providing individual patient data. Twenty-one eligible articles covering 501 patients with MS were included. The pooled incidence of central vein sign at the level of individual lesion in patients with MS was 74% (95% CI, 65–82%). The pooled sensitivity and pooled specificity for the diagnostic performance of the central vein sign were 98% (95% CI, 92–100%) and 97% (95% CI, 91–99%), respectively. The area under the HSROC curve was 1.00 (95% CI, 0.99–1.00). The optimal cut-off value for the proportion of lesions with a central vein sign was found to be 45%. Although various T2*-weighted images have been used across studies, the current evidence supports the use of the central vein sign on T2*-weighted images to differentiate MS from other white matter lesions.


2021 ◽  
pp. 55-56
Author(s):  
Jonathan L. Carter

A 36-year-old woman with a history of relapsing-remitting multiple sclerosis was evaluated for new multiple sclerosis symptoms accompanied by new, enhancing, white matter lesions on brain magnetic resonance imaging. Her multiple sclerosis presented with L’hermitte sign when she was 24 years old. She had onset of bilateral lower extremity and left upper extremity tingling at age 26 years. Magnetic resonance imaging and cerebrospinal fluid examination at the time were supportive of the diagnosis of multiple sclerosis, and disease-modifying therapy was recommended by her neurologist. She initiated therapy with dimethyl fumarate at age 30 years after several further relapses. Surveillance magnetic resonance imaging showed new gadolinium-enhancing lesions on brain magnetic resonance imaging on each of 3 consecutive yearly scans. Urine culture and sensitivity tests were performed to rule out occult urinary tract infection; results of this testing were negative. magnetic resonance imaging of the brain concurrently showed new enhancing white matter lesions. The patient was diagnosed with clinical and radiographic breakthrough disease activity while receiving therapy for multiple sclerosis. The patient was treated with 5 days of intravenous methylprednisolone for her relapse. After discussion with the patient, it was decided to transition therapy from dimethyl fumarate to ocrelizumab infusions for her breakthrough disease activity. This decision was further supported by the patient’s concerns that she might be entering an early progressive phase of the disease. In patients with spinal-predominant multiple sclerosis, or with symptoms potentially indicating new spinal cord involvement, it may be necessary to include spinal cord imaging to assess for new disease activity.


Sign in / Sign up

Export Citation Format

Share Document