scholarly journals Adaptive design of a clinical decision support tool: What the impact on utilization rates means for future CDS research

2019 ◽  
Vol 5 ◽  
pp. 205520761982771 ◽  
Author(s):  
Devin Mann ◽  
Rachel Hess ◽  
Thomas McGinn ◽  
Rebecca Mishuris ◽  
Sara Chokshi ◽  
...  

OBJECTIVE We employed an agile, user-centered approach to the design of a clinical decision support tool in our prior integrated clinical prediction rule study, which achieved high adoption rates. To understand if applying this user-centered process to adapt clinical decision support tools is effective in improving the use of clinical prediction rules, we examined utilization rates of a clinical decision support tool adapted from the original integrated clinical prediction rule study tool to determine if applying this user-centered process to design yields enhanced utilization rates similar to the integrated clinical prediction rule study. MATERIALS & METHODS: We conducted pre-deployment usability testing and semi-structured group interviews at 6 months post-deployment with 75 providers at 14 intervention clinics across the two sites to collect user feedback. Qualitative data analysis is bifurcated into immediate and delayed stages; we reported on immediate-stage findings from real-time field notes used to generate a set of rapid, pragmatic recommendations for iterative refinement. Monthly utilization rates were calculated and examined over 12 months. RESULTS We hypothesized a well-validated, user-centered clinical decision support tool would lead to relatively high adoption rates. Then 6 months post-deployment, integrated clinical prediction rule study tool utilization rates were substantially lower than anticipated based on the original integrated clinical prediction rule study trial (68%) at 17% (Health System A) and 5% (Health System B). User feedback at 6 months resulted in recommendations for tool refinement, which were incorporated when possible into tool design; however, utilization rates at 12 months post-deployment remained low at 14% and 4% respectively. DISCUSSION Although valuable, findings demonstrate the limitations of a user-centered approach given the complexity of clinical decision support. CONCLUSION Strategies for addressing persistent external factors impacting clinical decision support adoption should be considered in addition to the user-centered design and implementation of clinical decision support.

Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 100488
Author(s):  
Rachel Gold ◽  
Mary Middendorf ◽  
John Heintzman ◽  
Joan Nelson ◽  
Patrick O'Connor ◽  
...  

2014 ◽  
Vol 141 (5) ◽  
pp. 718-723 ◽  
Author(s):  
Gary W. Procop ◽  
Lisa M. Yerian ◽  
Robert Wyllie ◽  
A. Marc Harrison ◽  
Kandice Kottke-Marchant

2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S31-S31
Author(s):  
Sena Veazey ◽  
Maria SerioMelvin ◽  
David E Luellen ◽  
Angela Samosorn ◽  
Alexandria Helms ◽  
...  

Abstract Introduction In disaster or mass casualty situations, access to remote burn care experts, communication, or resources may be limited. Furthermore, burn injuries are complex and require substantial training and knowledge beyond basic clinical care. Development and use of decision support (DS) technologies may provide a solution for addressing this need. Devices capable of delivering burn management recommendations can enhance the provider’s ability to make decisions and perform interventions in complex care settings. When coupled with merging augmented reality (AR) technologies these tools may provide additional capabilities to enhance medical decision-making, visualization, and workflow when managing burns. For this project, we developed a novel AR-based application with enhanced integrated clinical practice guidelines (CPGs) to manage large burn injuries for use in different environments, such as disasters. Methods We identified an AR system that met our requirements to include portability, infrared camera, gesture and voice control, hands-free control, head-mounted display, and customized application development abilities. Our goal was to adapt burn CPGs to make use of AR concepts as part of an AR-enabled burn clinical decision support system supporting four sub-applications to assist users with specific interventional tasks relevant to burn care. We integrated relevant CPGs and a media library with photos and videos as additional references. Results We successfully developed a clinical decision support tool that integrates burn CPGs with enhanced capabilities utilizing AR technology. The main interface allows input of patient demographics and injuries with step-by-step guidelines that follow typical burn management care and workflow. There are four sub-applications to assist with these tasks, which include: 1) semi-automated burn wound mapping to calculate total body surface area; 2) hourly burn fluid titration and recommendations for resuscitation; 3) medication calculator for accurate dosing in preparation for procedures and 4) escharotomy instructor with holographic overlays. Conclusions We developed a novel AR-based clinical decision support tool for management of burn injuries. Development included adaptation of CPGs into a format to guide the user through burn management using AR concepts. The application will be tested in a prospective research study to determine the effectiveness, timeliness, and performance of subjects using this AR-software compared to standard of care. We fully expect that the tool will reduce cognitive workload and errors, ensuring safety and proper adherence to guidelines.


Sign in / Sign up

Export Citation Format

Share Document