Safety and feasibility of convection-enhanced delivery of nimustine hydrochloride co-infused with free gadolinium for real-time monitoring in the primate brain

2012 ◽  
Vol 34 (6) ◽  
pp. 581-587 ◽  
Author(s):  
Shin-ichiro Sugiyama ◽  
Ryuta Saito ◽  
Taigen Nakamura ◽  
Yoji Yamashita ◽  
Michiko Yokosawa ◽  
...  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Ryuta Saito ◽  
Masayuki Kanamori ◽  
Yukihiko Sonoda ◽  
Yoji Yamashita ◽  
Kenichi Nagamatsu ◽  
...  

Abstract Background Treatment options for patients suffering brainstem gliomas are quite limited as surgery is not an option against intrinsic tumors at brainstem and chemotherapy generally failed to demonstrate its efficacy. Intracerebral convection-enhanced delivery (CED) is a novel approach for administering chemotherapy to patients with brain tumors. We present the results of phase I trial of CED of nimustine hydrochloride (ACNU), designed to determine the maximum tolerable concentration of ACNU, for patients with recurrent brainstem gliomas. Methods Sixteen patients, aged 3–81 years old, suffering from recurrent brainstem gliomas, including diffuse intrinsic pontine glioma patients as well as patients with recurrent gliomas that originated from non-brainstem sites, were enrolled in this trial between February 2011 and April 2016. The dose/concentration escalation trial included 3 dose/concentration groups (0.25, 0.5, and 0.75 mg/mL, all at 7 mL) to determine the safety and tolerability of CED of ACNU. Real-time monitoring of drug distribution was performed by mixing gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA) in the infusion solution. CED of ACNU was given in combination with oral or intravenous temozolomide chemotherapy. Results CED of ACNU demonstrated antitumor activity, as assessed by radiographic changes and prolonged overall survival. The recommended dosage was 0.75 mg/mL. Drug-associated toxicity was minimal. Conclusions Intracerebral CED of ACNU under real-time monitoring of drug distribution, in combination with systemic temozolomide, was well tolerated among patients with recurrent brainstem gliomas. The safety and efficacy observed suggest the clinical benefits of this strategy against this devastating disease. Based on this phase I study, further clinical development of ACNU is warranted.


2005 ◽  
Vol 196 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Ryuta Saito ◽  
Michal T. Krauze ◽  
John R. Bringas ◽  
Charles Noble ◽  
Tracy R. McKnight ◽  
...  

2008 ◽  
Vol 210 (2) ◽  
pp. 638-644 ◽  
Author(s):  
Michal T. Krauze ◽  
Scott R. Vandenberg ◽  
Yoji Yamashita ◽  
Ryuta Saito ◽  
John Forsayeth ◽  
...  

2010 ◽  
Vol 112 (4) ◽  
pp. 790-795 ◽  
Author(s):  
John D. Heiss ◽  
Stuart Walbridge ◽  
Ashok R. Asthagiri ◽  
Russell R. Lonser

Object Muscimol is a potent γ-aminobutyric acid-A receptor agonist that temporarily and selectively suppresses neurons. Targeted muscimol suppression of neuronal structures could provide insight into the pathophysiological processes and treatment of a variety of neurological disorders. To determine if muscimol delivered to the brain by convection-enhanced delivery could be monitored using a coinfused surrogate MR imaging tracer, the authors perfused the striata of primates with tritiated muscimol and Gd–diethylenetriamine pentaacetic acid (DTPA). Methods Three primates underwent convective coinfusion of 3H-muscimol (0.8 μM) and Gd-DTPA (5 mM) into the bilateral striata. Primates underwent serial MR imaging during infusion, and the animals were killed immediately after infusion. Postmortem quantitative autoradiography and histological analysis was performed. Results Real-time MR imaging revealed that infusate (tritiated muscimol and Gd-DTPA) distribution was clearly discernible from the noninfused parenchyma. Real-time MR imaging of the infusion revealed the precise region of anatomical perfusion in each animal. Imaging analysis during infusion revealed that the distribution volume (Vd) of infusate linearly increased (R = 0.92) with volume of infusion (Vi). Overall, the mean (± SD) Vd/Vi ratio was 8.2 ± 1.3. Autoradiographic analysis revealed that MR imaging of Gd-DTPA closely correlated with the distribution of 3H-muscimol, and precisely estimated its Vd (mean difference in Vd, 7.4%). Quantitative autoradiograms revealed that muscimol was homogeneously distributed over the perfused region in a square-shaped concentration profile. Conclusions Muscimol can be effectively delivered to clinically relevant volumes of the primate brain. Moreover, the distribution of muscimol can be tracked using coinfusion of Gd-DTPA and MR imaging. The ability to perform accurate monitoring and to control the anatomical extent of muscimol distribution during its convection-enhanced delivery will enhance safety, permit correlations of muscimol distribution with clinical effect, and should lead to an improved understanding of the pathophysiological processes underlying a variety of neurological disorders.


2006 ◽  
Vol 175 (4S) ◽  
pp. 521-521
Author(s):  
Motoaki Saito ◽  
Tomoharu Kono ◽  
Yukako Kinoshita ◽  
Itaru Satoh ◽  
Keisuke Satoh

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-1175-Pr3-1182 ◽  
Author(s):  
M. Losurdo ◽  
A. Grimaldi ◽  
M. Giangregorio ◽  
P. Capezzuto ◽  
G. Bruno

2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
ABHINAV BHUSHAN ◽  
SONALI J. KARNIK

Sign in / Sign up

Export Citation Format

Share Document