Effect of surface modified layers on fretting fatigue damage of biomedical titanium alloys

2006 ◽  
Vol 22 (9) ◽  
pp. 1119-1125 ◽  
Author(s):  
A. Vadiraj ◽  
M. Kamaraj ◽  
U. Kamachi Mudali ◽  
A. K. Nath
2007 ◽  
Vol 539-543 ◽  
pp. 681-686
Author(s):  
Aravind Vadiraj ◽  
M. Kamaraj

Fretting fatigue is a form of adhesive wear damage caused due to tangential micro motion of two contact bodies under normal pressure and cyclic load. Biomedical implants such as hip joints and bone plates undergo fretting fatigue damage leading to premature in-vivo failure and revision surgeries. Surface modification of implants delays the process of fretting and thereby improves the life of these medical devices. This work involves investigation of fretting fatigue damage of surface treated titanium alloys couple. The surface treatment involves PVD TiN coating, Plasma nitriding, Ion Implantation, Laser nitriding and thermal oxidation. Fretting of all surface treated alloys have shown both adhesive and abrasive mode of contact damage. Friction coefficient of all the surface treated pairs is less compared to uncoated alloys. Plasma nitrided pairs have shown the best performance in terms of fretting fatigue life and friction coefficient compared to all other coatings. Ion implanted pairs have shown little improvement in fretting fatigue lives due to shallow modified layer. PVD TiN coated pairs have irregular friction pattern due to abrasive particles at contact. Thermal oxidation and Laser nitriding have shown poor fretting fatigue performance due to high case thickness.


Sign in / Sign up

Export Citation Format

Share Document