Effect of C/C preform density on microstructure and mechanical properties of C/C–SiC composites prepared by alloyed reactive melt infiltration

2012 ◽  
Vol 28 (12) ◽  
pp. 1505-1512 ◽  
Author(s):  
Y G Tong ◽  
S X Bai ◽  
H Zhang ◽  
Y C Ye
2015 ◽  
Vol 816 ◽  
pp. 71-77
Author(s):  
Jing Wang ◽  
Ying Bin Cao ◽  
Dong Lin ◽  
Rong Jun Liu ◽  
Chang Rui Zhang

C/C-SiC composites were prepared by reactive melt infiltration process at different temperatures. The composition, microstructures and mechanical properties of the composites were investigated. The results showed that infiltration temperature could affect composite’s properties through regulating the chemical composition and interfacial bonding strength of the composites. The C/C-SiC composite prepared at 1650°C exhibited the relatively highest performance with density of 2.24 g·cm-3 and SiC content of 31.44 vol.%. The flexural strength and the fracture toughness were 238MPa and 10.04 MPa·m1/2, respectively.


2009 ◽  
Vol 620-622 ◽  
pp. 371-374 ◽  
Author(s):  
Ji Ping Wang ◽  
Min Lin ◽  
Yong Hui Zhang ◽  
Zhuo Xu ◽  
Zhi Hao Jin

C/C-SiC composites were rapidly fabricated using C/C with four different porosities in the range of 12.4%~45.7% and silicon by reactive-melt-infiltrated (RMI) method. The influence of the C/C porosity on the Si infiltration during the processing and on the microstructure and mechanical properties of the resulting C/C-SiC were investigated. The results show that β-SiC was formed by Si/C reaction and free Si remained in the composites. A higher porosity of C/C leads more Si infiltrating to the preform and produces higher density of C/C-SiC with lower porosity. The flexural strength of the composites was strong influenced by the matrix content and the interface between different phases. C/C-SiC derived from C/C with 24.8% porosity has the highest flexural strength (325.1MPa).


Sign in / Sign up

Export Citation Format

Share Document