Oncogenic interaction between BCR-ABL andNUP98-HOXA9 demonstrated by the use of an in vitro purging culture system

Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4177-4184 ◽  
Author(s):  
Nadine Mayotte ◽  
Denis-Claude Roy ◽  
Jing Yao ◽  
Evert Kroon ◽  
Guy Sauvageau

Chronic myelogenous leukemia (CML) is a clonal stem cell disease caused by the BCR-ABL oncoprotein and is characterized, in its early phase, by excessive accumulation of mature myeloid cells, which eventually leads to acute leukemia. The genetic events involved in CML's progression to acute leukemia remain largely unknown. Recent studies have detected the presence of theNUP98-HOXA9 fusion oncogene in acute leukemia derived from CML patients, which suggests that these 2 oncoproteins may interact and influence CML disease progression. Using in vitro purging of BCR-ABL–transduced mouse bone marrow cells, we can now report that recipients of bone marrow cells engineered to coexpressBCR-ABL with NUP98-HOXA9 develop acute leukemia within 7 to 10 days after transplantation. However, no disease is detected for more than 2 months in mice receiving bone marrow cells expressing either BCR-ABL orNUP98-HOXA9. We also provide evidence of high levels ofHOXA9 expressed in leukemic blasts from acute-phase CML patients and that it interacts significantly on a genetic level withBCR-ABL in our in vivo CML model. Together, these studies support a causative, as opposed to a consequential, role forNUP98-HOXA9 (and possibly HOXA9) in CML disease progression.

1999 ◽  
Vol 19 (9) ◽  
pp. 6355-6366 ◽  
Author(s):  
Unnur Thorsteinsdottir ◽  
Jana Krosl ◽  
Evert Kroon ◽  
André Haman ◽  
Trang Hoang ◽  
...  

ABSTRACT A recurrent translocation between chromosome 1 (Pbx1) and 19 (E2A) leading to the expression of the E2A-Pbx1 fusion oncoprotein occurs in ∼5 to 10% of acute leukemias in humans. It has been proposed that some of the oncogenic potential of E2A-Pbx1 could be mediated through heterocomplex formation with Hox proteins, which are also involved in human and mouse leukemias. To directly test this possibility, mouse bone marrow cells were engineered by retroviral gene transfer to overexpress E2A-Pbx1a together withHoxa9. The results obtained demonstrated a strong synergistic interaction between E2A-Pbx1a andHoxa9 in inducing growth factor-independent proliferation of transduced bone marrow cells in vitro and leukemic growth in vivo in only 39 ± 2 days. The leukemic blasts which coexpressE2A-Pbx1a and Hoxa9 showed little differentiation and produced cytokines such as interleukin-3, granulocyte colony-stimulating factor, and Steel. Together, these studies demonstrate that the Hoxa9 and E2A-Pbx1a gene products collaborate to produce a highly aggressive acute leukemic disease.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1621-1621
Author(s):  
Haruko Tashiro ◽  
Ryosuke Shirasaki ◽  
Yoko Oka ◽  
Toshihiko Sugao ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 1621 Poster Board I-647 Aims: Cancer stem cell theory has been developed, and whose precise characteristics have been reported. However, there have been no reports on the differentiation of cancer stem cells into the environmental stromal cells. We reported previously that non-adherent acute myelogenous leukemia (AML) cells were differentiated into myofibroblasts to create a microenvironment for proliferation of AML blasts in vitro. In this report we demonstrate that with severe combined immunodeficiency (SCID) mouse system AML blast cells also convert to myofibroblasts to form stroma in vivo. Materials and Methods Bone marrow cells were collected from informed AML (M2) patients who had chromosomal translocation of RUNX1 and ETO, from which mononuclear cells were separated with density-gradient sedimentation method. After discarded an adherent cell-fraction, the non-adherent mononuclear cells were injected to the 3.0 Gray-irradiated non-obese diabetes (NOD)/SCID mouse intravenously. For the inactivation of NK cells, anti-Asialo GM1 antibody was injected intra-peritoneally prior to the transplantation, and on each 11th day thereafter. Blood was collected to monitor Runx1 and ETO fusion transcript, and mice were sacrificed after chimeric mRNA was observed. Bone marrow cells were obtained, and sorted with anti-human CD133 antibody and -CD106 to select AML-derived human stromal myofibroblasts referred to the in vitro data. The isolated positive fraction was further cultured, and the biological and the molecular characteristics were analyzed. Results and Discussion When non-adherent AML (M2) blast cells were transplanted to NOD/SCID mice, cells were engrafted after 10 weeks. In murine bone marrow cells human stromal cells were identified, in which RUNX1 and ETO gene was fused with FISH analysis. When the parental AML blast cells were cultured on the expanded AML-derived myofibroblasts, AML cells grew extensively. These results indicate that AML cells can create their own microenvironment for proliferation in vivo. Disclosures No relevant conflicts of interest to declare.


1971 ◽  
Vol 134 (3) ◽  
pp. 786-800 ◽  
Author(s):  
Myra Small ◽  
Nathan Trainin

The hypothesis that cells located in mouse bone marrow can acquire immunological competence by a process that involves interaction with a noncellular component of the thymus was tested using an in vitro assay of graft-versus-host reactivity as a criterion of cell competence. When suspensions of C57BL bone marrow cells were incubated in thymus extract and injected into mice incapable of inducing a response in the graft-versus-host assay as a result of neonatal thymectomy, or adult thymectomy plus irradiation, or because of genetic similarity with the (C3H x C57BL)F1 tissue used for challenge in the assay, competent cells were recovered from the spleens of the injected mice. The reactive cells were shown to be of bone marrow origin since immune reactivity was related to the genetic makeup of the bone marrow cells rather than that of the intermediate recipients. A thymic factor was involved in the process leading to immune reactivity by these cells, as bone marrow cells incubated in xenogeneic or syngeneic thymic extracts induced a graft-versus-host response after passage through nonresponsive mice, whereas incubation of bone marrow cells in xenogeneic lymph node or spleen extracts or in culture medium only did not lead to subsequent reactivity. Participation of peripheral lymphoid tissue seemed essential in this process since bone marrow cells tested directly after exposure to thymic extract failed to induce a graft-versus-host response. C57BL bone marrow cells exposed to thymus extract and cultured together with fragments of (C3H x C57BL)F1 spleen tissue in vitro were competent to induce a graft-versus-host response; thus, these components would seem to be sufficient as well as necessary for the immunodifferentiation process leading to graft-versus-host activity. It is concluded that one step in the process by which bone marrow cells acquire competence vis-a-vis the graft-versus-host response depends upon a thymic agent that is noncellular and extractable, and that another stage in this process is under the influence of components found within the peripheral lymphoid tissue environment. It is suggested that differentiation of precursor cells to competence could occur by progressive development of the cells in separate compartments of the lymphoid system.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 753-757 ◽  
Author(s):  
G Degliantoni ◽  
L Mangoni ◽  
V Rizzoli

Bone marrow cells of a 45-year-old female with Philadelphia chromosome (Ph1)-positive, early-phase chronic myelogenous leukemia (CML), who was heterozygous for the glucose-6-phosphate dehydrogenase (G6PD) locus, were pretreated in vitro with 4-hydroperoxycyclophosphamide (4-HC) and tested for G6PD activity in several colony formation assays and for karyotypic abnormalities. All cells within the mixed (CFU-GEMM), the erythroid burst (BFU-E), and the granulocyte-macrophage (CFU-GM) colonies expressed type A and type B G6PD activity and a normal karyotype, whereas untreated cells expressed type A G6PD and the Ph1 chromosome. This reversal of G6PD activity type and the disappearance of the Ph1 chromosome in colonies grown from 4-HC-treated cells indicate that this cytotoxic agent spares a residual normal stem cell population in bone marrow cells of early-phase CML patients. This finding, in turn, suggests a therapeutic approach in CML based on in vitro chemotherapy of autologous bone marrow grafts.


Sign in / Sign up

Export Citation Format

Share Document