Cleavage at Arg740 Appears Essential for Thrombin-Catalyzed Cleavage at Arg372 during the Activation of Factor VIII.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1692-1692
Author(s):  
Jennifer Newell ◽  
Philip J. Fay

Abstract Factor VIIIa serves as an essential cofactor for the factor IXa-catalyzed activation of factor X during the propagation phase of coagulation. The factor VIII procofactor is converted to factor VIIIa by thrombin-catalyzed proteolysis of three P1 positions at Arg372 (A1–A2 junction), Arg740 (A2–B junction), and Arg1689 (a3–A3 junction). Cleavage at Arg372 exposes a cryptic functional factor IXa-interactive site, while cleavage at Arg1689 liberates factor VIII from von Willebrand factor and contributes to factor VIIIa specific activity, thus making both sites essential for procofactor activation. However, cleavage at Arg740, separating the A2–B domainal junction, has not been rigorously studied. To evaluate thrombin cleavage at Arg740, we prepared and stably expressed two recombinant factor VIII mutants, Arg740His and Arg740Gln. Results from a previous study examining proteolysis at Arg372 revealed substantially reduced cleavage rates following substitution of that P1 Arg with His, whereas replacing Arg with Gln at residue 372 yielded an uncleavable bond at that site (Nogami et al., Blood, 2005). Specific activity values for the factor VIII Arg740His and Arg740Gln variants as measured using a one-stage clotting assay were approximately 50% and 18%, respectively, that of the wild type protein. SDS-PAGE and western blotting following a reaction of factor VIII Arg740His with thrombin showed reduced rates of cleavage at His740 as well as at Arg372 relative to the wild type. Alternatively, factor VIII Arg740Gln was resistant to thrombin cleavage at Gln740 and showed little, if any, cleavage at Arg372 over an extended time course. The mutant proteins assayed in a purified system by factor Xa generation showed a slight increase in activity for the Arg740His variant compared with the Arg740Gln variant in both the absence and presence of thrombin, and the activities for both variants were reduced compared with wild type factor VIII. These results suggest that cleavage at residue 740 affects subsequent cleavage at Arg372 and generation of the active cofactor factor VIIIa. Preliminary results obtained evaluating proteolysis of these mutants by factor Xa, which cleaves the same sites in factor VIII as thrombin, also revealed slow proteolysis at the P1 His and no cleavage at the P1 Gln. However, subsequent cleavage at Arg372 exhibited less dependence on initial cleavage at residue 740. These observations may explain the higher than predicted specific activity values obtained for the two variants and suggest a different mechanism of action for the two activating proteinases. Overall, these results support a model whereby cleavage of factor VIII heavy chain by thrombin is an ordered pathway with initial cleavage at Arg740 required to facilitate cleavage at the critical Arg372 site to yield the active cofactor.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2686-2686
Author(s):  
Jennifer Newell ◽  
Qian Zhou ◽  
Philip J. Fay

Abstract Factor VIIIa acts as an essential cofactor for the serine protease factor IXa, together forming the Xase complex which catalyzes the conversion of factor X to factor Xa. The procofactor, factor VIII circulates as a heterodimeric protein comprised of a heavy chain (A1–A2-B domains) and a light chain (A3-C1-C2 domains) and is activated by proteolytic cleavage by thrombin at Arg372 (A1–A2 junction), Arg740 (A2-B junction), and Arg1689 (near the N-terminus of A3). The regions adjacent to the A1, A2, and A3 domains contain high concentrations of acidic residues and are designated a1 (residues 337–372), a2 (residues 711–740), and a3 (residues 1649–1689). In addition, the N-terminus of the A2 domain (residues 373–395) is rich in acidic residues, and results from a previous study revealed that this region contributes to the rate of thrombin-catalyzed cleavage at Arg740 (Nogami et. al., J. Biol. Chem. 280:18476, 2005). In this study we reveal a role for the acidic region following the A2 domain (a2, residues 717–725) in thrombin-catalyzed cleavage at both Arg372 and Arg1689. The factor VIII mutations Asp717Ala, Glu720Ala, Asp721Ala, Glu724Ala, Asp725Ala, and the double mutations of Glu720Ala/Asp721Ala and Glu724Ala/Asp725Ala were constructed, expressed, and purified from stably-transfected BHK cells as B-domainless protein. Specific activity values for the variants, relative to the wild type value were reduced to 70% for Asp717Ala; ∼50% for Glu720Ala, Asp721Ala, Glu724Ala, and Asp725Ala; and ∼30% for Glu720Ala/Asp721Ala and Glu724Ala/Asp725Ala. SDS-PAGE and western blotting of reactions containing the factor VIII variants and thrombin showed reductions in the rates of thrombin cleavage at both Arg372 and Arg1689 as compared to wild-type factor VIII. The cleavage rates for the single mutations comprising acidic residues 720–724 of factor VIII were reduced from ∼3-5-fold at Arg372, whereas this rate for the Asp717Ala mutant was similar to the wild-type value. The double mutations of Glu720Ala/Asp721Ala and Glu724Ala/Asp725Ala showed rate reductions of ∼7- and ∼27-fold, respectively at Arg372. While the rate for thrombin-catalyzed cleavage at Arg1689 in the Glu720Ala variant was similar to wild-type, rates for cleavage at this site were reduced ∼30-fold compared to wild-type factor VIII for the Asp721Ala, Glu724Ala, Asp725Ala, and Glu720Ala/Asp721Ala mutants, and ∼50-fold for the Glu724Ala/Asp725Ala variant. Furthermore, the generation of factor VIIIa activity following reaction with thrombin as assayed by factor Xa generation showed that all the mutants possessed peak activity values that were ∼2-3-fold reduced compared to wild type factor VIIIa. Moreover, in all the mutants the characteristic peak of activation was replaced with a slower forming, broad plateau of activity, with the double mutants showing the broadest activation profiles. These results suggest that residues Glu720, Asp721, Glu724, and Asp725 following the A2 domain modulate thrombin interactions with factor VIII facilitating cleavage at Arg372 and Arg1689 during procofactor activation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2690-2690
Author(s):  
Fatbardha Varfaj ◽  
Hironao Wakabayashi ◽  
Philip J. Fay

Abstract Activation of the heterodimeric factor VIII procofactor is achieved by proteolysis of the heavy chain at residues Arg740 and Arg372 and of the light chain at Arg1689 in reactions catalyzed by thrombin or factor Xa. The active cofactor, factor VIIIa, is a heterotrimer consisting of the A1, A2, and A3-C1-C2 subunits. Factor VIIIa inactivation occurs by two mechanisms, spontaneous dissociation of the A2 subunit from factor VIIIa and proteolytic inactivation catalyzed by activated protein C (APC) as well as factor Xa. APC-catalyzed inactivation of factor VIIIa results from proteolysis at the P1 residues Arg336 and Arg562 within the A1 and A2 subunits, respectively, with cleavage at Arg336 representing the dominant reaction. Factor Xa-catalyzed inactivation of factor VIIIa occurs following cleavage only at the former site. While investigating the role for residues in the P2 position (residue 335) in the proteolytic mechanism for factor VIIIa inactivation, we stably expressed and purified several recombinant B-domainless factor VIII mutants. One variant, Leu335Pro, was based upon the optimal residue (Pro) at the P2 position for thrombin. Specific activity of the Leu335Pro factor VIII was ∼75% that of WT factor VIII. A time course of thrombin-catalyzed activation of the Leu335Pro factor VIII, as monitored by a one-stage clotting assay, yielded a similar activity increase to that of WT, consistent with similar rates of cleavages converting the procofactor to cofactor. However, this activity was highly unstable in the variant and quickly decayed such that at 10 min following thrombin addition, the residual activity of the variant was reduced ∼40-fold compared to WT. To investigate the reason for this rapid rate of inactivation of the newly generated cofactor, we monitored cleavages in the factor VIII heavy chain following reaction with thrombin, as well as APC and factor Xa by Western blot analysis. As predicted from the activity data, thrombin efficiently cleaved both the WT and Leu335Pro at Arg740 and Arg372, generating the A1 and A2 subunits of factor VIIIa. In WT factor VIIIa, we also observed a relatively slow rate of cleavage in the A1 subunit generating a product consistent with proteolysis at the APC-sensitive Arg336 site. This material represented <20% of the total A1 subunit at an extended time point (40 min) in the reaction suggesting that thrombin-cleavage at this site is a minor pathway. However, thrombin cleavage of the A1 subunit derived from Leu335Pro generated the truncated A1 product at a >50-fold increased rate compared with WT. Since Pro represents an optimal residue at the P2 position for thrombin action, these results suggest that the presence of this residue facilitated cleavage at Arg336. While the presence of Pro335 did not appreciably affect cleavage of Arg336 by APC compared to the cleavage rate observed in the WT factor VIII, this rate was ∼5-fold less than thrombin-catalyzed cleavage at Arg336 in the Leu335Pro variant. Furthermore, the rate of factor Xa-catalyzed cleavage at this site in the variant was accelerated ∼10-fold relative to WT. Overall, these data suggest that replacement of Leu335 with Pro markedly increases proteolytic inactivation of factor VIIIa by both thrombin, and to a lesser extent factor Xa by creating a more optimal region for active site engagement at Arg336.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 847-847
Author(s):  
Jennifer L. Newell ◽  
Amy E. Griffiths ◽  
Philip J. Fay

Abstract Abstract 847 Hemophilia A results from defects or deficiencies in the blood coagulation protein, factor VIII. Factor VIII circulates as an inactive procofactor that must be cleaved by thrombin or factor Xa at Arg740 (A2-B junction), Arg372 (A1-A2 junction), and Arg1689 (a3-A3 junction) to yield the active cofactor, factor VIIIa. Activation of factor VIII by thrombin is exosite-dependent yielding rates of cleavage at Arg740 ∼20-fold faster than Arg372, while cleavage at Arg1689 appears intermediary to Arg740 and Arg372. The contribution of P3-P3' residues flanking each cleavage site to the mechanism of thrombin-catalyzed cleavage of factor VIII has not been extensively studied. The P3-P3' residues for the 372, 1689, and 740 factor VIII sites are 370QIR*↓SVA375, 1687SPR*↓SFQ1692, and 738EPR*↓SFS743, respectively. Residues flanking Arg372 are considered non-optimal for thrombin cleavage with only two residues optimal (in bold type) for cleavage in the P3-P3' sequence, while residues flanking at the two other P1 sites are considered near-optimal with four out of six residues optimal (in bold type). Therefore, we investigated whether the P3-P3'residues surrounding Arg740, Arg372, and Arg1689 affect activation of factor VIII by thrombin. We constructed, stably transfected, and expressed four recombinant P3-P3' factor VIII mutants designated 372(P3-P3')740, 372(P3-P3')1689, 372(P3-P3')740/740(P3-P3')372, and 372(P3-P3')740/1689(P3-P3')372. For example, the 372(P3-P3')740 variant has replaced the non-optimal P3-P3' residues flanking Arg372 with the near-optimal P3-P3' residues flanking Arg740. The specific activities of the 372(P3-P3')740 and 372(P3-P3')740/740(P3-P3')372 mutants were 98% and 122% the wild-type factor VIII value, respectively. In comparison, the 372(P3-P3')1689 and 372(P3-P3')740/1689(P3-P3')372 showed reductions in specific activity with values that were 14% and 17% of wild-type factor VIII, consistent with possible impaired rates of activation by thrombin. SDS-PAGE and Western blotting of the three variants possessing the 372(P3-P3')740 mutation showed cleavage rates at Arg372 increased 11- to 14-fold compared with wild-type factor VIII as judged by rates of generation of the A1 subunit. Furthermore, these variants revealed 11-21-fold rate increases in the generation of the A2 subunit as compared to wild-type factor VIII. The rates of A1 and A2 subunit generation were moderately increased from 2-3-fold for the 372(P3-P3')1689 mutant. These results indicate that replacing the non-optimal residues flanking Arg372 with near-optimal residues enhances rates of cleavage at this site. Furthermore, since the P2-P2' residues flanking Arg740 and Arg1689 are identical, these results also suggest that the P3 and/or P3' residues from the Arg740 cleavage site make a greater contribution to the enhanced cleavage rate when inserted at Arg372 than the equivalent residues from the Arg1689 site. Thrombin cleavage of light chain showing the largest effect was obtained for the 372(P3-P3')740/1689(P3-P3')372 mutant which yielded a reduced rate of A3-C1-C2 subunit generation by 33-fold. This result suggests that replacing near-optimal P3-P3' residues at Arg1689 with non-optimal residues at Arg372 significantly reduces the rate of thrombin cleavage at Arg1689, an effect that may contribute to its low specific activity. There was no observed defect in Arg1689 cleavage in the 372(P3-P3')740 mutant and moderate 2-3-fold reductions in thrombin-catalyzed cleavage rates at Arg1689 in the 372(P3-P3')1689, 372(P3-P3')740/740(P3-P3')372, and 372(P3-P3')740 variants. Overall, these results suggest that faster cleavage rates at Arg740 and Arg1689 can be attributed to more optimal residues in the P3-P3' region, while the relatively slower cleavage rate at Arg372 can be accelerated by replacement with more optimal residues for thrombin cleavage. Thus, the P3-P3' residues surrounding Arg740, Arg1689, and Arg372 in factor VIII impact rates of thrombin proteolysis at each site and contribute to the mechanism for thrombin activation of the procofactor. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 82 (08) ◽  
pp. 193-200 ◽  
Author(s):  
Philip Fay

IntroductionHemophilia A, the most common of the severe, inherited bleeding disorders, results from a deficiency or defect in the plasma protein factor VIII. The activated form of the protein serves as an essential cofactor for factor IXa in the conversion of factor X to factor Xa. This surface-bound complex of enzyme and cofactor is referred to as the intrinsic factor Xase. Factor VIIIa dramatically increases the catalytic rate constant for substrate conversion by an unclear mechanism. The activity and stability of the factor Xase appears to be regulated by the integrity of the cofactor. Factor VIIIa possesses a labile structure, and subunit dissociation results in the decay of Xase activity. Furthermore, factor VIIIa is a substrate for proteolytic inactivation by several enzymes, including factor IXa, the enzyme for which it serves as a cofactor. Although interest in the structure, function, and metabolism of factor VIII is commensurate with its biochemical and clinical importance, the molecular basis for its role in coagulation and the regulation of function through complex intramolecular and intermolecular interactions remain poorly understood.


2001 ◽  
Vol 276 (15) ◽  
pp. 12434-12439 ◽  
Author(s):  
Philip J. Fay ◽  
Maria Mastri ◽  
Mary E. Koszelak ◽  
Hironao Wakabayashi

Factor VIII circulates as a noncovalent heterodimer consisting of a heavy chain (HC, contiguous A1-A2-B domains) and light chain (LC). Cleavage of HC at the A1-A2 and A2-B junctions generates the A1 and A2 subunits of factor VIIIa. Although the isolated A2 subunit stimulates factor IXa-catalyzed generation of factor Xa by ∼100-fold, the isolated HC, free from the LC, showed no effect in this assay. However, extended reaction of HC with factors IXa and X resulted in an increase in factor IXa activity because of conversion of the HC to A1 and A2 subunits by factor Xa. HC cleavage by thrombin or factor Xa yielded similar products, although factor Xa cleaved at a rate of ∼1% observed for thrombin. HC showed little inhibition of the A2 subunit-dependent stimulation of factor IXa activity, suggesting that factor IXa-interactive sites are masked in the A2 domain of HC. Furthermore, HC showed no effect on the fluorescence anisotropy of fluorescein-Phe-Phe-Arg-factor IXa in the presence of factor X, whereas thrombin-cleaved HC yielded a marked increase in this parameter. These results indicate that HC cleavage by either thrombin or factor Xa is essential to expose the factor IXa-interactive site(s) in the A2 subunit required to modulate protease activity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1714-1714
Author(s):  
Masahiro Takeyama ◽  
Keiji Nogami ◽  
Kohei Tatsumi ◽  
Yuri Fujita ◽  
Ichiro Tanaka ◽  
...  

Abstract Factor VIII functions as a cofactor in the factor Xase complex responsible for phospholipid surface-dependent conversion of factor X to factor Xa by factor IXa. Factor VIIIa, activated form by thrombin and factor Xa, is down regulated by activated protein C (APC), and the reaction is enhanced by the presence of protein S, a cofactor for APC. It was previously reported that protein S inactivated directly factor Xa or factor Va, however, the direct regulation of factor VIII by protein S remains to be investigated. In the present study, surface plasmon resonance (SPR)-based assay showed that factor VIII bound directly to immobilized protein S (Kd; 70 nM). The isolated A2 and A3 domains also bound to protein S with similar modest affinity (Kd; 15 and 17 nM, respectively), whilst the isolated A1 and C2 domains failed to bind, suggesting the presence of protein S-binding sites within the A2 and A3 domain. Since it is known that factor IXa also interacts with the A2 and A3 domains in factor VIII, we examined the inhibitory effect of factor IXa on the factor VIII and protein S interaction in a SPR-based assay. Active-site modified (EGR−) factor IXa competitively inhibited the binding of protein S to both the A2 and A3-C1-C2 domains dose-dependently. Furthermore, Western blotting analysis using an anti-A1 monoclonal antibody revealed that Arg336 cleavage in factor VIII by factor IXa in the presence of protein S was slower with an ~1.8-fold lower cleavage rate than that in its absence, supporting that protein S competed the factor IXa interaction with factor VIII. Of interest, the reaction with protein S to factor VIII inhibited the generation of factor Xa dose-dependently in a factor Xa generation assay (IC50; 150 nM). The Km value for factor X obtained with factor Xase complex in the presence of physiological concentration of protein S was 19 nM, which was ~2-fold lower than that in its absence (45 nM). Whilst, the Km value for factor IXa in the presence of protein S was greater than 100 nM, which was ~5000-fold higher than that in its absence (21 pM). We demonstrate that protein S not only contributes to down-regulate factor VIIIa activity as a cofactor for APC, but also impairs the factor Xase complex by competing the binding of factor IXa to factor VIII.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1481-1481
Author(s):  
Hiroaki Minami ◽  
Keiji Nogami ◽  
Takehisa Kitazawa ◽  
Kunihiro Hattori ◽  
Midori Shima

Abstract Background: ACE910, asymmetric bispecific monoclonal antibodies to activated factor IX (IXa) and factor X, mimics the cofactor function of activated factor VIII (VIIIa) by modulating an optimal position on the tenase assembly. The estimated therapeutic range of ACE910 shows ~30% of thrombin generation in native tenase assembly, supporting that the structure on ACE910-mimicking tenase assembly is different from that on native tenase. Being close to physiological structure consisting from factor IXa, factor X, and factor VIIIa is important for potentiating the clotting function. We examined the effects of factor VIII subunits (light chain, heavy chain, A1 and A2, C2) on ACE910-tenase. Materials/Methods: The factor VIII light chain and heavy chain were isolated from EDTA-treated recombinant factor VIII following chromatography on SP- and Q- Sepharose columns. The A2 and A1 subunits were purified from thrombin-cleaved factor VIII heavy chain by Heparin-, SP- Sepharose columns. Purified factor Xa generation assays was examined with (i) factor VIII subunit (0-40 nM), ACE910 (10 µg/ml), phospholipid (PL) (40 µM), factor IXa (1 nM) and factor X (200 nM), (ii, iii) the A2 or heavy chain (40 nM), ACE910 (10 µg/ml), PL (40 µM), factor IXa and factor X (1 or 0-80 nM, and 0-300 or 200 nM, respectively). These mixtures were reacted for five minutes (i, ii) or one minute (iii). These assays were conducted at 37 °C. Results: (i) The factor Xa generation in ACE910-tenase complex in the absence of factor VIIIa was 10.1±2.2 nM. With the intact heavy chain and A2, amounts of factor Xa were increased dose-dependently, resulting in 1.3- and 1.2-fold increases, respectively. While, the light chain and A1 subunit failed to increase at all. (ii) Vmax for factor X in ACE910-tenase was 173.0±7.0 nM and Km was 31.2±3.9 nM. Vmax obtained with the heavy chain or A2 was 175.9±6.1 or 159.0±6.1 nM, whilst Km was 17.0±2.2 or 31.9±3.5 nM, respectively, indicating that the heavy chain enhanced the binding affinity for factor X in ACE910-tenase. (iii) Vmax for factor IXa in ACE910-tenase was 43.8±2.7 nM and Km was 36.9±4.8 nM. With the heavy chain or A2, Vmax was 46.8±3.0 or 45.0±3.1 nM, and Km was 36.4±3.0 or 32.1±4.9 nM, respectively, indicating that either the heavy chain or A2 did not enhance the catalytic activity and the binding affinity for factor IXa in ACE910-tenase. Conclusion: ACE910-tenase assembly seems to be close to physiological structure by the presence of intact heavy chain interacting with factor X. In addition, ACE910 may substitute the position such as the factor VIII(a) light chain associated with FIXa and FX on ACE910-tenase assembly defecting factor VIII. Disclosures Minami: Chugai Pharmaceutical Co., Ltd.: Research Funding. Nogami:Chugai Pharmaceutical Co., Ltd.: Membership on an entity's Board of Directors or advisory committees, Research Funding. Kitazawa:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Hattori:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Shima:Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


1992 ◽  
Vol 176 (1) ◽  
pp. 27-35 ◽  
Author(s):  
M P McGee ◽  
L C Li ◽  
M Hensler

Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin-activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin-activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes. These kinetic profiles are consistent with a 1:1 stoichiometry for the functional interaction between cofactor and enzyme on the surface of monocytes and platelets. Taken together, these results indicate that autocatalytic pathways connecting the extrinsic, intrinsic, and common coagulation pathways can operate efficiently on the monocyte membrane.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 196-196
Author(s):  
H. Travis Ichikawa ◽  
Qian Zhou ◽  
Philip J. Fay

Abstract Factor VIIIa serves as a cofactor for factor IXa in the membrane-dependent conversion of factor X to Xa. Factor VIIIa is a non-covalent trimer of subunits designated A1, A2 and A3-C1-C2. The A2 subunit of factor VIIIa is essential for cofactor activity and extensive evidence suggests it forms an extended interface with the protease domain of factor IXa. A2 residues 484–510 appear important to factor Xase activity inasmuch as this region is a hotspot for inhibitor antibodies that block cofactor function. In an earlier study we showed that individual substitutions of the basic residues Arg489, Arg490, and Lys493 within this segment with alanine yielded little if any effect on activity whereas a mutant where all three residues were replaced showed a significant reduction in the rate for cofactor-dependent conversion of factor X (Jenkins et al., J Thromb Haemost. 2004), suggesting a role for this positive charge density in catalysis. To gain further insights into mechanisms responsible for this effect, we expressed and purified the wild type and the triple mutant (489-3A) as isolated A2 domains in insect cells using a baculovirus expression system. Factor VIIIa reconstituted from purified A1/A3-C1-C2 dimer and the wild type baculovirus (b) A2 yielded cofactor activity that was indistinguishable from that of factor VIIIa reconstituted from BHK cell-derived recombinant factor VIIIa subunits, as judged by factor Xa generation assays. Both wild type and mutant bA2 forms showed similar affinities in forming factor Xase in the presence of A1/A3-C1-C2 dimer, factor IXa and phospholipid vesicles. On the other hand, factor Xase reconstituted from the 489-3A bA2 exhibited an ~25-fold reduced kcat compared with the wild type control. Interestingly, the mutation reduced the Km for substrate factor X by ~10-fold, suggesting that the elimination of the positive charge density enhanced the association of the substrate with factor Xase. However, this enhancement in substrate association was offset by a slow catalytic mechanism that may include turnover and/or release of product. To examine the latter parameter, an active site-modified factor Xa, EGR-factor Xa, was evaluated for its interactions with factor Xase. EGR-factor Xa competitively inhibited substrate factor X binding to factor Xase with a Ki value that was ~100-fold greater for Xase containing the wild type A2 compared with the value for Xase with the mutant A2. This result suggested the mutant A2-containing factor Xase was defective in release of the macromolecular product. In contrast, this mutation in A2 showed little if any effect on the amidolytic activity of factor Xase as judged using a small chromogenic substrate. Overall, these results suggest that this basic cluster within the A2 subunit functions in both macromolecular substrate binding and product release. We speculate that the latter mechanism derives from repulsive forces that are decreased in the 489-3A A2 mutant.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1761-1770
Author(s):  
P Neuenschwander ◽  
J Jesty

Two aspects of the activation of factor X by the intrinsic clotting pathway have been studied in purified human systems, in the presence of either purified phosphatidylserine:phosphatidylcholine vesicles (PS:PC) or platelets activated with ionophore A23187: (1) the activation of factor VIII by factor Xa and by thrombin, and (2) the activation of factor X by the factor IXa/VIIIa complex. Factor VIII activation by thrombin was unaffected in either rate or extent by the presence of PS:PC or activated platelets. In contrast, factor VIII activation by factor Xa required either PS:PC or platelets. The products of optimal factor VIII activation by the two enzymes, designated factor VIIIa(T) and factor VIIIa(Xa), are kinetically different in the activation of factor X by factor IXa, factor VIIIa(T) being approximately twice as active (in factor X activation) as factor VIIIa(Xa) in the presence of PS:PC or platelets. Factor VIIIa(Xa) can be converted to the more active VIIIa(T) by thrombin treatment, but the activity of factor VIIIa(T) is unchanged by factor Xa treatment. Factor X activation was also studied with optimally activated factor VIIIa(T), in the presence of PS:PC or activated platelets, as a function of factor IXa concentration in order to determine the apparent dissociation constant for the factor IXa-VIIIa interaction in the two cases. Activated platelets increased the apparent affinity more than fivefold.


Sign in / Sign up

Export Citation Format

Share Document