scholarly journals Cleavage of Factor VIII Heavy Chain Is Required for the Functional Interaction of A2 Subunit with Factor IXa

2001 ◽  
Vol 276 (15) ◽  
pp. 12434-12439 ◽  
Author(s):  
Philip J. Fay ◽  
Maria Mastri ◽  
Mary E. Koszelak ◽  
Hironao Wakabayashi

Factor VIII circulates as a noncovalent heterodimer consisting of a heavy chain (HC, contiguous A1-A2-B domains) and light chain (LC). Cleavage of HC at the A1-A2 and A2-B junctions generates the A1 and A2 subunits of factor VIIIa. Although the isolated A2 subunit stimulates factor IXa-catalyzed generation of factor Xa by ∼100-fold, the isolated HC, free from the LC, showed no effect in this assay. However, extended reaction of HC with factors IXa and X resulted in an increase in factor IXa activity because of conversion of the HC to A1 and A2 subunits by factor Xa. HC cleavage by thrombin or factor Xa yielded similar products, although factor Xa cleaved at a rate of ∼1% observed for thrombin. HC showed little inhibition of the A2 subunit-dependent stimulation of factor IXa activity, suggesting that factor IXa-interactive sites are masked in the A2 domain of HC. Furthermore, HC showed no effect on the fluorescence anisotropy of fluorescein-Phe-Phe-Arg-factor IXa in the presence of factor X, whereas thrombin-cleaved HC yielded a marked increase in this parameter. These results indicate that HC cleavage by either thrombin or factor Xa is essential to expose the factor IXa-interactive site(s) in the A2 subunit required to modulate protease activity.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1481-1481
Author(s):  
Hiroaki Minami ◽  
Keiji Nogami ◽  
Takehisa Kitazawa ◽  
Kunihiro Hattori ◽  
Midori Shima

Abstract Background: ACE910, asymmetric bispecific monoclonal antibodies to activated factor IX (IXa) and factor X, mimics the cofactor function of activated factor VIII (VIIIa) by modulating an optimal position on the tenase assembly. The estimated therapeutic range of ACE910 shows ~30% of thrombin generation in native tenase assembly, supporting that the structure on ACE910-mimicking tenase assembly is different from that on native tenase. Being close to physiological structure consisting from factor IXa, factor X, and factor VIIIa is important for potentiating the clotting function. We examined the effects of factor VIII subunits (light chain, heavy chain, A1 and A2, C2) on ACE910-tenase. Materials/Methods: The factor VIII light chain and heavy chain were isolated from EDTA-treated recombinant factor VIII following chromatography on SP- and Q- Sepharose columns. The A2 and A1 subunits were purified from thrombin-cleaved factor VIII heavy chain by Heparin-, SP- Sepharose columns. Purified factor Xa generation assays was examined with (i) factor VIII subunit (0-40 nM), ACE910 (10 µg/ml), phospholipid (PL) (40 µM), factor IXa (1 nM) and factor X (200 nM), (ii, iii) the A2 or heavy chain (40 nM), ACE910 (10 µg/ml), PL (40 µM), factor IXa and factor X (1 or 0-80 nM, and 0-300 or 200 nM, respectively). These mixtures were reacted for five minutes (i, ii) or one minute (iii). These assays were conducted at 37 °C. Results: (i) The factor Xa generation in ACE910-tenase complex in the absence of factor VIIIa was 10.1±2.2 nM. With the intact heavy chain and A2, amounts of factor Xa were increased dose-dependently, resulting in 1.3- and 1.2-fold increases, respectively. While, the light chain and A1 subunit failed to increase at all. (ii) Vmax for factor X in ACE910-tenase was 173.0±7.0 nM and Km was 31.2±3.9 nM. Vmax obtained with the heavy chain or A2 was 175.9±6.1 or 159.0±6.1 nM, whilst Km was 17.0±2.2 or 31.9±3.5 nM, respectively, indicating that the heavy chain enhanced the binding affinity for factor X in ACE910-tenase. (iii) Vmax for factor IXa in ACE910-tenase was 43.8±2.7 nM and Km was 36.9±4.8 nM. With the heavy chain or A2, Vmax was 46.8±3.0 or 45.0±3.1 nM, and Km was 36.4±3.0 or 32.1±4.9 nM, respectively, indicating that either the heavy chain or A2 did not enhance the catalytic activity and the binding affinity for factor IXa in ACE910-tenase. Conclusion: ACE910-tenase assembly seems to be close to physiological structure by the presence of intact heavy chain interacting with factor X. In addition, ACE910 may substitute the position such as the factor VIII(a) light chain associated with FIXa and FX on ACE910-tenase assembly defecting factor VIII. Disclosures Minami: Chugai Pharmaceutical Co., Ltd.: Research Funding. Nogami:Chugai Pharmaceutical Co., Ltd.: Membership on an entity's Board of Directors or advisory committees, Research Funding. Kitazawa:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Hattori:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Shima:Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2686-2686
Author(s):  
Jennifer Newell ◽  
Qian Zhou ◽  
Philip J. Fay

Abstract Factor VIIIa acts as an essential cofactor for the serine protease factor IXa, together forming the Xase complex which catalyzes the conversion of factor X to factor Xa. The procofactor, factor VIII circulates as a heterodimeric protein comprised of a heavy chain (A1–A2-B domains) and a light chain (A3-C1-C2 domains) and is activated by proteolytic cleavage by thrombin at Arg372 (A1–A2 junction), Arg740 (A2-B junction), and Arg1689 (near the N-terminus of A3). The regions adjacent to the A1, A2, and A3 domains contain high concentrations of acidic residues and are designated a1 (residues 337–372), a2 (residues 711–740), and a3 (residues 1649–1689). In addition, the N-terminus of the A2 domain (residues 373–395) is rich in acidic residues, and results from a previous study revealed that this region contributes to the rate of thrombin-catalyzed cleavage at Arg740 (Nogami et. al., J. Biol. Chem. 280:18476, 2005). In this study we reveal a role for the acidic region following the A2 domain (a2, residues 717–725) in thrombin-catalyzed cleavage at both Arg372 and Arg1689. The factor VIII mutations Asp717Ala, Glu720Ala, Asp721Ala, Glu724Ala, Asp725Ala, and the double mutations of Glu720Ala/Asp721Ala and Glu724Ala/Asp725Ala were constructed, expressed, and purified from stably-transfected BHK cells as B-domainless protein. Specific activity values for the variants, relative to the wild type value were reduced to 70% for Asp717Ala; ∼50% for Glu720Ala, Asp721Ala, Glu724Ala, and Asp725Ala; and ∼30% for Glu720Ala/Asp721Ala and Glu724Ala/Asp725Ala. SDS-PAGE and western blotting of reactions containing the factor VIII variants and thrombin showed reductions in the rates of thrombin cleavage at both Arg372 and Arg1689 as compared to wild-type factor VIII. The cleavage rates for the single mutations comprising acidic residues 720–724 of factor VIII were reduced from ∼3-5-fold at Arg372, whereas this rate for the Asp717Ala mutant was similar to the wild-type value. The double mutations of Glu720Ala/Asp721Ala and Glu724Ala/Asp725Ala showed rate reductions of ∼7- and ∼27-fold, respectively at Arg372. While the rate for thrombin-catalyzed cleavage at Arg1689 in the Glu720Ala variant was similar to wild-type, rates for cleavage at this site were reduced ∼30-fold compared to wild-type factor VIII for the Asp721Ala, Glu724Ala, Asp725Ala, and Glu720Ala/Asp721Ala mutants, and ∼50-fold for the Glu724Ala/Asp725Ala variant. Furthermore, the generation of factor VIIIa activity following reaction with thrombin as assayed by factor Xa generation showed that all the mutants possessed peak activity values that were ∼2-3-fold reduced compared to wild type factor VIIIa. Moreover, in all the mutants the characteristic peak of activation was replaced with a slower forming, broad plateau of activity, with the double mutants showing the broadest activation profiles. These results suggest that residues Glu720, Asp721, Glu724, and Asp725 following the A2 domain modulate thrombin interactions with factor VIII facilitating cleavage at Arg372 and Arg1689 during procofactor activation.


1999 ◽  
Vol 82 (08) ◽  
pp. 193-200 ◽  
Author(s):  
Philip Fay

IntroductionHemophilia A, the most common of the severe, inherited bleeding disorders, results from a deficiency or defect in the plasma protein factor VIII. The activated form of the protein serves as an essential cofactor for factor IXa in the conversion of factor X to factor Xa. This surface-bound complex of enzyme and cofactor is referred to as the intrinsic factor Xase. Factor VIIIa dramatically increases the catalytic rate constant for substrate conversion by an unclear mechanism. The activity and stability of the factor Xase appears to be regulated by the integrity of the cofactor. Factor VIIIa possesses a labile structure, and subunit dissociation results in the decay of Xase activity. Furthermore, factor VIIIa is a substrate for proteolytic inactivation by several enzymes, including factor IXa, the enzyme for which it serves as a cofactor. Although interest in the structure, function, and metabolism of factor VIII is commensurate with its biochemical and clinical importance, the molecular basis for its role in coagulation and the regulation of function through complex intramolecular and intermolecular interactions remain poorly understood.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1692-1692
Author(s):  
Jennifer Newell ◽  
Philip J. Fay

Abstract Factor VIIIa serves as an essential cofactor for the factor IXa-catalyzed activation of factor X during the propagation phase of coagulation. The factor VIII procofactor is converted to factor VIIIa by thrombin-catalyzed proteolysis of three P1 positions at Arg372 (A1–A2 junction), Arg740 (A2–B junction), and Arg1689 (a3–A3 junction). Cleavage at Arg372 exposes a cryptic functional factor IXa-interactive site, while cleavage at Arg1689 liberates factor VIII from von Willebrand factor and contributes to factor VIIIa specific activity, thus making both sites essential for procofactor activation. However, cleavage at Arg740, separating the A2–B domainal junction, has not been rigorously studied. To evaluate thrombin cleavage at Arg740, we prepared and stably expressed two recombinant factor VIII mutants, Arg740His and Arg740Gln. Results from a previous study examining proteolysis at Arg372 revealed substantially reduced cleavage rates following substitution of that P1 Arg with His, whereas replacing Arg with Gln at residue 372 yielded an uncleavable bond at that site (Nogami et al., Blood, 2005). Specific activity values for the factor VIII Arg740His and Arg740Gln variants as measured using a one-stage clotting assay were approximately 50% and 18%, respectively, that of the wild type protein. SDS-PAGE and western blotting following a reaction of factor VIII Arg740His with thrombin showed reduced rates of cleavage at His740 as well as at Arg372 relative to the wild type. Alternatively, factor VIII Arg740Gln was resistant to thrombin cleavage at Gln740 and showed little, if any, cleavage at Arg372 over an extended time course. The mutant proteins assayed in a purified system by factor Xa generation showed a slight increase in activity for the Arg740His variant compared with the Arg740Gln variant in both the absence and presence of thrombin, and the activities for both variants were reduced compared with wild type factor VIII. These results suggest that cleavage at residue 740 affects subsequent cleavage at Arg372 and generation of the active cofactor factor VIIIa. Preliminary results obtained evaluating proteolysis of these mutants by factor Xa, which cleaves the same sites in factor VIII as thrombin, also revealed slow proteolysis at the P1 His and no cleavage at the P1 Gln. However, subsequent cleavage at Arg372 exhibited less dependence on initial cleavage at residue 740. These observations may explain the higher than predicted specific activity values obtained for the two variants and suggest a different mechanism of action for the two activating proteinases. Overall, these results support a model whereby cleavage of factor VIII heavy chain by thrombin is an ordered pathway with initial cleavage at Arg740 required to facilitate cleavage at the critical Arg372 site to yield the active cofactor.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1714-1714
Author(s):  
Masahiro Takeyama ◽  
Keiji Nogami ◽  
Kohei Tatsumi ◽  
Yuri Fujita ◽  
Ichiro Tanaka ◽  
...  

Abstract Factor VIII functions as a cofactor in the factor Xase complex responsible for phospholipid surface-dependent conversion of factor X to factor Xa by factor IXa. Factor VIIIa, activated form by thrombin and factor Xa, is down regulated by activated protein C (APC), and the reaction is enhanced by the presence of protein S, a cofactor for APC. It was previously reported that protein S inactivated directly factor Xa or factor Va, however, the direct regulation of factor VIII by protein S remains to be investigated. In the present study, surface plasmon resonance (SPR)-based assay showed that factor VIII bound directly to immobilized protein S (Kd; 70 nM). The isolated A2 and A3 domains also bound to protein S with similar modest affinity (Kd; 15 and 17 nM, respectively), whilst the isolated A1 and C2 domains failed to bind, suggesting the presence of protein S-binding sites within the A2 and A3 domain. Since it is known that factor IXa also interacts with the A2 and A3 domains in factor VIII, we examined the inhibitory effect of factor IXa on the factor VIII and protein S interaction in a SPR-based assay. Active-site modified (EGR−) factor IXa competitively inhibited the binding of protein S to both the A2 and A3-C1-C2 domains dose-dependently. Furthermore, Western blotting analysis using an anti-A1 monoclonal antibody revealed that Arg336 cleavage in factor VIII by factor IXa in the presence of protein S was slower with an ~1.8-fold lower cleavage rate than that in its absence, supporting that protein S competed the factor IXa interaction with factor VIII. Of interest, the reaction with protein S to factor VIII inhibited the generation of factor Xa dose-dependently in a factor Xa generation assay (IC50; 150 nM). The Km value for factor X obtained with factor Xase complex in the presence of physiological concentration of protein S was 19 nM, which was ~2-fold lower than that in its absence (45 nM). Whilst, the Km value for factor IXa in the presence of protein S was greater than 100 nM, which was ~5000-fold higher than that in its absence (21 pM). We demonstrate that protein S not only contributes to down-regulate factor VIIIa activity as a cofactor for APC, but also impairs the factor Xase complex by competing the binding of factor IXa to factor VIII.


1992 ◽  
Vol 176 (1) ◽  
pp. 27-35 ◽  
Author(s):  
M P McGee ◽  
L C Li ◽  
M Hensler

Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin-activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin-activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes. These kinetic profiles are consistent with a 1:1 stoichiometry for the functional interaction between cofactor and enzyme on the surface of monocytes and platelets. Taken together, these results indicate that autocatalytic pathways connecting the extrinsic, intrinsic, and common coagulation pathways can operate efficiently on the monocyte membrane.


1977 ◽  
Author(s):  
Earl W. Davie ◽  
Gordon Vehar ◽  
Kazuo Fujikawa ◽  
Richard Di Scipio

Factor IXa and factor VIII participate in the middle phase of blood coagulation. These two proteins convert factor X to factor Xa in the presence of calcium ions and phospholipid. The coagulant activity of factor VIII is increased 50-100 fold by the addition of thrombin, and this activity is stabilized in the presence of CaCl2. The activated product (tentatively identified as activated factor VIII) was readily inhibited by diisopropyl phosphorofluoridate or antithrombin III, suggesting that it is a serine enzyme. The exact role of this enzyme in the conversion of factor X to factor Xa, however, is not known. When factor X (bovine or human) is converted to factor Xa, an activation peptide is cleaved from the amino-terminal end of the heavy chain. This gives rise to a new amino-terminal sequence of Ile-Val-Gly-Gly-in the heavy chain. No change occurs in the light chain during the activation reaction. These data indicate that the basic mechanism involved in the conversion of human and bovine factor X to factor Xa appears to be essentially identical and probably involves the formation of a charge relay system characteristic of the pancreatic serine proteases.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1761-1770
Author(s):  
P Neuenschwander ◽  
J Jesty

Two aspects of the activation of factor X by the intrinsic clotting pathway have been studied in purified human systems, in the presence of either purified phosphatidylserine:phosphatidylcholine vesicles (PS:PC) or platelets activated with ionophore A23187: (1) the activation of factor VIII by factor Xa and by thrombin, and (2) the activation of factor X by the factor IXa/VIIIa complex. Factor VIII activation by thrombin was unaffected in either rate or extent by the presence of PS:PC or activated platelets. In contrast, factor VIII activation by factor Xa required either PS:PC or platelets. The products of optimal factor VIII activation by the two enzymes, designated factor VIIIa(T) and factor VIIIa(Xa), are kinetically different in the activation of factor X by factor IXa, factor VIIIa(T) being approximately twice as active (in factor X activation) as factor VIIIa(Xa) in the presence of PS:PC or platelets. Factor VIIIa(Xa) can be converted to the more active VIIIa(T) by thrombin treatment, but the activity of factor VIIIa(T) is unchanged by factor Xa treatment. Factor X activation was also studied with optimally activated factor VIIIa(T), in the presence of PS:PC or activated platelets, as a function of factor IXa concentration in order to determine the apparent dissociation constant for the factor IXa-VIIIa interaction in the two cases. Activated platelets increased the apparent affinity more than fivefold.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1761-1770 ◽  
Author(s):  
P Neuenschwander ◽  
J Jesty

Abstract Two aspects of the activation of factor X by the intrinsic clotting pathway have been studied in purified human systems, in the presence of either purified phosphatidylserine:phosphatidylcholine vesicles (PS:PC) or platelets activated with ionophore A23187: (1) the activation of factor VIII by factor Xa and by thrombin, and (2) the activation of factor X by the factor IXa/VIIIa complex. Factor VIII activation by thrombin was unaffected in either rate or extent by the presence of PS:PC or activated platelets. In contrast, factor VIII activation by factor Xa required either PS:PC or platelets. The products of optimal factor VIII activation by the two enzymes, designated factor VIIIa(T) and factor VIIIa(Xa), are kinetically different in the activation of factor X by factor IXa, factor VIIIa(T) being approximately twice as active (in factor X activation) as factor VIIIa(Xa) in the presence of PS:PC or platelets. Factor VIIIa(Xa) can be converted to the more active VIIIa(T) by thrombin treatment, but the activity of factor VIIIa(T) is unchanged by factor Xa treatment. Factor X activation was also studied with optimally activated factor VIIIa(T), in the presence of PS:PC or activated platelets, as a function of factor IXa concentration in order to determine the apparent dissociation constant for the factor IXa-VIIIa interaction in the two cases. Activated platelets increased the apparent affinity more than fivefold.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1763-1763
Author(s):  
Hironao Wakabayashi ◽  
Philip J. Fay

Abstract Factor VIII circulates as a heterodimer composed of a heavy chain and light chain. Thrombin converts factor VIII into the active cofactor, factor VIIIa, by cleaving heavy chain into A1 and A2 subunits. While the A1 subunit maintains a stable interaction with the light chain-derived A3C1C2 subunit, the A2 subunit is weakly associated in the trimer and this low affinity interaction accounts for the instability of factor VIIIa activity. In examining the ceruloplasmin-based factor VIII A domain model, potential hydrogen bond pairings based upon spatial separations of <2.8Å were found between side chains of the A2 domain residues and residues in the A1 or A3 domain represented by residues D27, R282, E287, D302, S313, H317, Y476, T522, R531, N538, E540, S650, Y664, N684, N694, S695, D696, Y1786, S1791, Y1792, D1795, E1829, and S1949. Since hydrogen bonds at an interactive site contribute to structural stability, we performed a scanning mutagenesis study where these residues were individually replaced with Ala, except Tyr residues were replaced with Phe, in order to examine the contribution of each site to the stability of the factor VIII/VIIIa forms. Factor VIII activity decay was followed by incubating factor VIII (5 nM) at 55°C, and at indicated times removing an aliquot, activating with thrombin and measuring residual activity by a factor Xa generation assay. Factor VIIIa activity decay was measured by mixing factor VIII (5 nM) with factor IXa (40 nM), activating factor VIII with thrombin, and following factor Xase activity at 23°C by factor Xa generation. Non-linear least squares regression using a single exponential decay equation of activity versus time was performed to obtain rates for factor VIII/VIIIa activity decay. Eleven out of 23 factor VIII mutants showed increases in either or both decay rates by >2-fold compared to wild type (WT) (Figure). Of these mutants, R282A showed the largest increase in both factor VIII and VIIIa decay rates (∼30-fold compared to WT). Interestingly, 5 mutants (T522A, D1795A, Y1792F, Y1786F, and E1892A) showed >2-fold increased rates in factor VIIIa decay compared with the rates for factor VIII decay, whereas 2 mutants (N694A and Y664F) showed >2-fold increased rates in factor VIII decay compared with rates for factor VIIIa decay. These results suggest that several residues at the A1-A2 and A2-A3 domain interfaces contribute to stabilizing the protein through hydrogen bonding and that mutation at these sites result in loss of stability as determined by enhanced rates of activity decay. Furthermore, these results permit discrimination between stabilizing hydrogen bonding in the procofactor from active cofactor, where bonding in the latter appears to make a more significant contribution to stability. This observation is consistent with an altered conformation involving new inter-subunit interactions for the A2 domain following factor VIII activation. Factor VIII/FVIIIa Decay Rate Factor VIII/FVIIIa Decay Rate


Sign in / Sign up

Export Citation Format

Share Document