Phase I Study of Lenalidomide in Acute Leukemia: Remissions in Post-Allogeneic Relapse of Acute Myeloid Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 841-841 ◽  
Author(s):  
Jason C. Chandler ◽  
Rebecca B. Klisovic ◽  
Mitch A. Phelps ◽  
Alison Walker ◽  
Ramiro Garzon ◽  
...  

Abstract Abstract 841 Lenalidomide is effective in myeloma and low-risk myelodysplastic syndromes (MDS), especially MDS with the 5q- cytogenetic abnormality, and may also have activity in acute leukemia. We designed a phase I dose escalation trial of lenalidomide in adults with relapsed or refractory acute leukemia to determine the maximum tolerable dose (MTD) and dose limiting toxicity (DLT), as well as to provide preliminary efficacy data in this setting. 35 adults with acute leukemia were enrolled: 31 with acute myeloid leukemia (AML) and 4 with acute lymphoblastic leukemia (ALL). Patients had a median age of 63 years (range, 22-79) and had received a median of 2 prior therapies (range, 1-4). 8 patients had relapsed after transplantation (7-allogeneic, 1-autologous). Patients were treated orally with lenalidomide on days 1-21 of 28 day cycles at the following dose levels: 25mg/day (N=4), 35mg/day (N=9), 50mg/day (N=19, including the expansion at the MTD), and 75mg/day (N=3). Patients were eligible to receive additional cycles of treatment beyond cycle 1 in the absence of disease progression defined as 25% increase in blasts relative to pretreatment. The median number of cycles received was 1 (range, 1-7). DLTs were assessed during cycle 1 of therapy. DLTs were sudden death (N=1, autopsy ruled out pulmonary embolism), rash (N=1), line-associated thrombosis (N=1), and fatigue (N=3). Grade 3 fatigue occurred in two patients at 75mg/day; 50mg/day was thus declared the recommended phase 2 dose and 10 additional patients were treated at this dose. The major toxicities associated with treatment were drug and disease associated myelosuppression and infection, as expected; these did not constitute DLT. In spite of concerns that higher dose lenalidomide would be associated with increased risk of thromboembolism, this toxicity was infrequent, even during multiple cycles of therapy. Two events occurred; both were line associated, and neither was life-threatening. Detailed pharmacokinetic results for the dose escalation cohorts in the trial are listed in the table below. Maximum plasma lenalidomide concentrations and area under the concentration-time curve (AUC) increased proportionally with dose. Drug clearance was independent of dose and correlated with calculated creatinine clearance. Of 31 patients with AML there were 5 complete responses (CR) (by IWG criteria for AML; Cheson, JCO 2003). 3/3 with cytogenetically abnormal AML achieved cytogenetic CR (cCR) as well. Achievement of CR was delayed beyond 2 months from initiation of therapy in each case. The duration of CR was 2.4-8.8 months, with two responders still in CR at 2.4+ and 4.7+ months, respectively. At 25mg, a 74 year old with AML in 2nd relapse with widespread leukemia cutis but no blood/marrow involvement had resolution of disease after 2 cycles. At 35mg, a 69 year old with AML and trisomy 13 achieved cCR after 2 cycles. At 50mg, there were three CRs, including two patients who received lenalidomide as initial therapy for relapsed AML following allogeneic stem cell transplant. In both of these cases, lenalidomide therapy was associated with the onset of skin rash requiring temporary discontinuation of drug; CR was achieved after 2 to 3 cycles of therapy and was preceded by cytogenetic remission before count recovery occurred. A third CR at the 50mg level occurred in a 70 year old with AML who had lenalidomide discontinued after 2 cycles due to no apparent response. Subsequently, CR was achieved 1 month later with no intervening therapy. In conclusion, single agent lenalidomide induced CR in 16% (5/31) of relapsed/ refractory AML patients. None of the responders had 5q-. The DLT was fatigue; the MTD was 50mg daily for days 1-21. Achievement of CR without donor leucocyte infusion in 2/4 patients who received lenalidomide as initial therapy for AML relapse following allogeneic transplantation suggests a possible allogeneic immunomodulatory effect. We are now developing a CTEP-sponsored study of lenalidomide as maintenance following allogeneic transplantation for AML. The promising single agent efficacy reported here supports further study of lenalidomide in combination with other agents in high risk AML. Disclosures: Blum: Celgene: Research Funding.

Blood ◽  
2009 ◽  
Vol 113 (5) ◽  
pp. 1002-1005 ◽  
Author(s):  
Todd A. Fehniger ◽  
John C. Byrd ◽  
Guido Marcucci ◽  
Camille N. Abboud ◽  
Cheryl Kefauver ◽  
...  

Abstract Patients with acute myeloid leukemia (AML) frequently fail chemotherapy due to refractory disease, relapse, or toxicity. Among older AML patients (age > 60 years), there are few long-term survivors. Lenalidomide is a candidate for study in AML based on its clinical activity in a related disorder, myelodysplastic syndrome (MDS), with the 5q− chromosomal abnormality. We report induction of sustained morphologic and cytogenetic complete remission in 2 older AML patients treated with high-dose, single-agent lenalidomide; each patient had trisomy 13 as the sole cytogenetic abnormality. We show for the first time that lenalidomide has clinical activity in this poor-risk cytogenetic subset of AML. The clinical trials described in this paper have been registered with www.clinicaltrials.gov under identifiers NCT00466895 and NCT00546897.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 443-443 ◽  
Author(s):  
Faith Davies ◽  
Gert Ossenkoppele ◽  
Pierre Zachee ◽  
Richard Noppeney ◽  
Alan Burnett ◽  
...  

Abstract Background. CHR-2797 is a novel, orally bioavailable agent which displays potent, tumor cell-selective, anti-proliferative properties. It is an inhibitor of Zn++-dependent aminopeptidases and generates signs of amino acid deprivation in sensitive cells, decreased protein synthesis and an increase in the level of the pro-apoptotic protein, NOXA. CHR-79888 is an active metabolite of CHR-2797. Methods. This was an open label, single agent, dose escalating phase I salvage study to assess tolerance, MTD/DLT, activity, and pharmacokinetics of CHR-2797 in patients with hematological malignancies. Elderly patients and/or relapsed patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM) were eligible. Patients were treated with escalating once daily doses (60–180 mg) for up to 84 days or until progressive disease (PD). Clinical responses were assessed by monthly bone marrow aspirates in AML/MDS patients and by M-protein levels in MM patients. Results. Sixteen adults (4 women, 12 men) of median age 70 yrs, (range 45–84 yrs) were accrued between May 2006 and Jan 2007: 13 patients with AML, 1 with MDS, and 2 with MM. Thirteen patients finished the dose finding phase of 28 days and 6 patients continued for at least 84 days. CHR-2797 was well tolerated and, except for one patient with grade III ALT elevation, no grade III/IV drug related non-hematological toxicity was observed during the first 28 days of treatment. Two patients on 180 mg developed DLT that was considered drug related: >75 percent reduction in platelet count. CHR-2797 had no influence on hemoglobin or neutrophils in this trial. Overall the most frequently reported adverse events were thrombocytopenia (6.7%), diarrhea (4.5%), dizziness (3.9%), and fatigue (3.9%). Five AML patients died in the first 3 months of the trial or within 4 weeks of discontinuing CHR-2797: 3 due to disease progression and 2 following a MI (not related to drug). Bone marrow studies revealed complete responses (< 5% blasts in bone marrow) in 3/12 AML patients after 1–3 months of therapy (60 and 130mg), one of which was also a cytogenetic response. One of the 2 responding patients on 130 mg was evaluated as a CRp at 3 months; this patient was in remission for 3 months following platelet recovery after the drug was stopped. One further AML patient (60 mg) became completely transfusion independent and remained so for 6 weeks. Good exposure to CHR-2797, including levels of the active metabolite CHR-79888 has been observed on days 1 and 28 with a terminal half life (for 79888) of 8– 11 hours. Conclusions. Oral once daily CHR-2797 in AML/MDS/MM patients with adverse prognostic risk was well tolerated. MTD for maintenance therapy was reached at 180 mg. Single agent CHR-2797 therapy showed encouraging clinical activity (incl. 3/12 CRs) in these elderly and poor risk AML patients who were able to continue therapy for at least 28 days. Because of the favorable results a phase II study with CHR-2797 in advanced AML is currently in progress.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A474-A474
Author(s):  
Yifan Zhai ◽  
Tapan Kadia

BackgroundAcute myeloid leukemia (AML) is the most common form of acute leukemia in adults, with an incidence that increases with age and a generally poor prognosis. This aggressive blood and bone-marrow malignancy is characterized by rapid and uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Patients with R/R AML have very few approved effective treatment options, especially in the absence of a targetable mutation. Alrizomadlin is a novel, orally active, potent, small-molecule selective inhibitor that destabilizes the p53-MDM2 complex and activates p53-mediated apoptosis in tumor cells with wild-type TP53 and/or MDM2 amplification. In acute leukemia human wild-type TP53 AML cell lines and xenograft models, alrizomadlin potently inhibited tumor cell growth when administered alone or with concomitant chemotherapy.MethodsThis US open-label study is evaluating the safety and tolerability of alrizomadlin, with or without 5-azacitidine, in adults with histologically confirmed R/R AML and adequate organ function. Eligible candidates will have AML with no known available therapies that are either indicated or expected to confer a durable response. In Part 1 of this trial, the safety and tolerability of alrizomadlin monotherapy are being assessed by evaluating the dose-limiting toxicity rate during the first 4 weeks of treatment, using a standard 3+3 design. The starting once-daily oral dose of alrizomadlin administered on Day 1 to 5 of every 28-day cycle is 100 mg, increasing to 150, 200, and 250 mg in each subsequent cohort. The severity of adverse events is being assessed using NCI CTCAE v5.0. Once the recommended phase 2 dose (RP2D) has been determined, 3 to 6 additional patients will be enrolled in the dose-expansion phase. In Part 2, alrizomadlin will be administered in combination with 5-azacitidine 75 mg/m2/day on Days 1–7 of a 28-day cycles. Alternatively, a 5-days-on, 2-days-off, 2-days-on schedule is allowed if consecutive day infusion is not available. A standard 3+3 design will also be implemented to determine the maximum tolerated dose/RP2D in the dose-escalation phase. Once the RP2D has been determined, there will be an expansion cohort of up to 15 patients. As of July 13, 2021, 2 patients have been enrolled in the alrizomadlin monotherapy dose-escalation phase. The overall estimated enrollment will be 69 study participants. Internal study identifier APG115AU101. ClinicalTrials.gov identifier: NCT04358393.Trial RegistrationClinicalTrials.gov identifier: NCT04358393


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4059-4059
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
Gabriela S. Hobbs ◽  
...  

Abstract Introduction: Treatment of acute myeloid leukemia (AML) has remained largely unchanged for several decades despite the emergence of new agents. Long-term survival for patients aged >60 years is less than 10% (median survival 10.5 months). Targeting the proteasome in treating AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). Preclinical studies in leukemia cell lines revealed synergistic cytotoxicity when bortezomib, a proteasome inhibitor, was combined with the standard agents daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although neurotoxicity was noted among treated patients, 12% grade 3 sensory (Attar, …, Amrein, et al. Clin Cancer Res 2008, Attar, … Amrein, J Clin Oncol 2012). The next generation proteasome inhibitor, ixazomib, which is less frequently associated with neurotoxicity, was therefore selected for combination with conventional chemotherapy in this phase I trial. The primary objective was to determine the maximum tolerated dose (MTD) in the combination, initially in induction, and then in combination with consolidation in a subsequent portion of the overall study. We report here the results of the induction portion of the study, which has been completed. Methods: Adults >60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. The induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3; ixazomib orally at the cohort dose, Days 2, 5, 9, and 12 A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction and subsequently in consolidation. The dose of 3.0 mg/day was the maximum planned for this study. The determined MTD of ixazomib in the first portion of the trial would be used during induction in the second portion, which seeks to test dose escalation of ixazomib during consolidation. Secondary objectives included rate of complete remission and disease-free survival. Results: Fourteen patients have been analyzed for toxicity and activity during the induction portion of the study. There were 4 (28%) patients with either secondary AML or treatment related AML, 9 (64%) were male, and the median age was 67 years (range 62-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 3 thrombocytopenia) indicated at the highest dose level. There has been no neurotoxicity with ixazomib to date. Among the 14 patients, there have been 10 complete remissions (CR's) and 1 CRi for a remission rate of 79%. Conclusions: The highest dose level planned for this portion of the trial, 3.0 mg of ixazomib, was reached with 1 DLT and is the recommended dose for induction in the next portion of this study, which will seek to determine a safe ixazomib dose in combination with conventional consolidation therapy. That no neurotoxicity was encountered was reassuring, and the remission rate in this older adult population is favorable. Table. Table. Disclosures Amrein: Takeda: Research Funding. Attar:Agios: Employment, Equity Ownership. Brunner:Takeda: Research Funding; Novartis: Research Funding; Celgene: Consultancy, Research Funding. Fathi:Celgene: Consultancy, Honoraria, Research Funding; Boston Biomedical: Consultancy, Honoraria; Astellas: Honoraria; Agios: Honoraria, Research Funding; Jazz: Honoraria; Seattle Genetics: Consultancy, Honoraria; Takeda: Consultancy, Honoraria.


2020 ◽  
Vol 38 (36) ◽  
pp. 4260-4273
Author(s):  
Olga Salamero ◽  
Pau Montesinos ◽  
Christophe Willekens ◽  
José Antonio Pérez-Simón ◽  
Arnaud Pigneux ◽  
...  

PURPOSE Iadademstat is a novel, highly potent, and selective inhibitor of LSD1 (KDM1A), with preclinical in vitro and in vivo antileukemic activity. This study aimed to determine safety and tolerability of iadademstat as monotherapy in patients with relapsed/refractory acute myeloid leukemia (R/R AML). METHODS This phase I, nonrandomized, open-label, dose-escalation (DE), and extension-cohort (EC) trial included patients with R/R AML and evaluated the safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antileukemic activity of this orally bioavailable first-in-class lysine-specific demethylase 1 inhibitor. RESULTS Twenty-seven patients were treated with iadademstat on days 1 to 5 (5-220 µg/m2/d) of each week in 28-day cycles in a DE phase that resulted in a recommended dose of 140 µg/m2/d of iadademstat as a single agent. This dose was chosen to treat all patients (n = 14) in an EC enriched with patients with MLL/KMT2A-rearranged AML. Most adverse events (AEs) were as expected in R/R AML and included myelosuppression and nonhematologic AEs, such as infections, asthenia, mucositis, and diarrhea. PK data demonstrated a dose-dependent increase in plasma exposure, and PD data confirmed a potent time- and exposure-dependent induction of differentiation biomarkers. Reductions in blood and bone marrow blast percentages were observed, together with induction of blast cell differentiation, in particular, in patients with MLL translocations. One complete remission with incomplete count recovery was observed in the DE arm. CONCLUSION Iadademstat exhibits a good safety profile together with signs of clinical and biologic activity as a single agent in patients with R/R AML. A phase II trial of iadademstat in combination with azacitidine is ongoing (EudraCT No.: 2018-000482-36).


Sign in / Sign up

Export Citation Format

Share Document