Developmental Programming of Bone Marrow Failure in a Murine Model of Fanconi Anemia

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1334-1334
Author(s):  
Ashley N. Kamimae-Lanning ◽  
Tae H. Ha ◽  
Amy M. Skinner ◽  
Thomas B. Russell ◽  
Peter Kurre

Abstract Abstract 1334 Bone marrow failure is the most common cause of morbidity and mortality from Fanconi anemia (FA), a recessively inherited disorder resulting from mutations in one of 15 known genes that cooperate in a DNA repair pathway. The underlying etiology is thought to reflect an accelerated postnatal exhaustion of the hematopoietic stem and progenitor cell (HSPC) pool. However, laboratory evidence of compromised hematopoietic function in patients generally precedes symptoms of cytopenia, and several other mesodermal-derived organ systems show defects with prenatal onset, including the skeletal system, heart, kidneys, and others. Further, recent experimental evidence in human embryonic stem cell lines suggested that RNA interference-mediated knock-down of FANCD2 and FANCA impairs development of hematopoietic cells. The fetal liver provides a unique microenvironment for development of definitive hematopoietic function and serves as a site of massive HSPC expansion. However, neither the potential developmental onset of bone marrow failure or non-stem cell-autonomous contributions in FA have been systematically clarified to-date. We relied on a murine model of FA with a transgenic disruption of Fancc to test the hypothesis that hematopoietic failure for this disease may have developmental origins. Although spontaneous bone marrow failure does not occur in this FA mouse model, animals recapitulate impaired repopulating ability, characteristic cell cycle abnormalities, and impaired cytokine responses. To determine whether number and function of fetal liver (FL) HSPCs affect postnatal hematopoietic function in FA mice, we plated unfractionated cells from 14.5 days post coitum (dpc) FL in methylcellulose and undertook a chronologic assessment of postnatal bone marrow progenitor clonogenicity. These studies showed that, compared with wild-type (wt) littermates, Fancc−/− animals demonstrate a progressive deficiency in progenitor number and function that increases with age, suggesting that HSPC attrition is developmentally programmed. Fancc−/−fetal mice revealed a 10% reduction in body mass and 33% lower total liver cell count compared with wt littermates. Cytogenetic analysis shows Fancc−/−FL cells exhibit mitomycin-c hypersensitivity characteristic of FA, with increased chromosomal breakage and radial formation. Livers of 14.5±.5 dpc Fancc−/−fetuses contain approximately 43% fewer c-Kit+Sca-1+ progenitor-enriched cells, compared with wt littermates. Cell cycle status of fetal livers revealed a characteristically increased proportion of Fancc−/− fetal liver progenitor-enriched (c-Kit+ Sca-1+) cells in G2-M phase of cell cycle, compared to wt littermate liver. When plated in methylcellulose assays, Fancc−/−FL showed an approximately 20% reduction in progenitor frequency, compared to wt littermates, and plating in mitomycin-c resulted in outgrowth of fewer colonies. Further, studies to determine the relative in vivo repopulating cell frequency were performed using CD45-isotype mismatched, submyeloablatively irradiated (750 cGy) animals. Recipients receiving unfractionated 14.5±.5 dpc Fancc−/−liver cells showed a slight, but consistent reduction in peripheral blood chimerism at serial timepoints (1–5 months) and bone marrow chimerism at sacrifice. We also found a 21% reduction in total Fancc−/−clonogenic bone marrow progenitor frequency by methylcellulose assay in primary recipients, compared to wt-transplanted controls. In sum, these studies suggest a developmental origin of hematopoietic failure in FA, whereby the prenatal onset potentially contributes to disease progression. Results contrast with a conventional model of postnatal stem cell attrition and may impact the development of preemptive therapies for FA patients. Disclosures: No relevant conflicts of interest to declare.

2016 ◽  
Vol 8 ◽  
pp. 2016054 ◽  
Author(s):  
Hosein Kamranzadeh fumani ◽  
Mohammad Zokaasadi ◽  
Amir Kasaeian ◽  
Kamran Alimoghaddam ◽  
Asadollah Mousavi ◽  
...  

Background & objectives: Fanconi anemia (FA) is a rare genetic disorder caused by an impaired DNA repair mechanism which leads to an increased tendency toward malignancies and progressive bone marrow failure. The only curative management available for hematologic abnormalities in FA patients is hematopoietic stem cell transplantation (HSCT). This study aimed to evaluate the role of HSCT in FA patients.Methods: Twenty FA patients with ages of 16 or more who underwent HSCT between 2002 and 2015 enrolled in this study. All transplants were allogeneic and the stem cell source was peripheral blood and all patients had a full HLA-matched donor.Results: Eleven patients were female and 9 male (55% and 45%). Mean age was 24.05 years. Mortality rate was 50% (n=10) and the main cause of death was GVHD. Survival analysis showed an overall 5-year survival of 53.63% and 13 year survival of 45.96 % among patients.Conclusion: HSCT is the only curative management for bone marrow failure in FA patients and despite high rate of mortality and morbidity it seems to be an appropriate treatment with an acceptable long term survival rate for adolescent and adult group.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 107-107
Author(s):  
Makiko Mochizuki-Kashio ◽  
Young Me Yoon ◽  
Theresa N Menna ◽  
Markus Grompe ◽  
Peter Kurre

Bone marrow (BM) failure is the principal source of morbidity and mortality in Fanconi Anemia (FA) patients. Recessively inherited germline mutations in one of 25 genes lead to deficits by in a pathway central to DNA crosslink repair. Functionally, FA proteins protect adult hematopoietic stem cells (HSC) from p53 mediated apoptosis elicited by alkylating agents, a range of experimental inflammatory cues or aldehyde exposure. However, these mechanisms do not seem to account for depleted hematopoietic stem and progenitor cell pools in very young FA patients, or the spontaneous, non-apoptotic and p53-independent fetal HSC deficits observed in murine models. Building on our previous observation of a quantitatively constrained fetal HSC pool in FA mice (Fancd2-/-), the current experiments reveal the specific developmental timeframe for the onset of stem cell deficits during HSC expansion in the fetal liver (FL). Cell cycle studies using an EdU/BrdU pulse chase protocol reveal delays in S-phase entry and progression at E13.5. Building on the role of FA proteins (FANCM, FANCI and FANCD2) in countering experimental replication stress (RS) in cell line models, we reasoned that rapid rates of proliferation required during expansion in the FL may similarly confer RS on the FA HSC pool. Experiments in E13.5 FL HSC confirmed the predicted increase in single stranded DNA and accumulation of nuclear replication associated protein (pRpa), along with activation of pChk1, a critical cell cycle checkpoint in cells under RS. For comparison, pChk1 in unperturbed adult cells was no different between Fancd2-/- and WT. The data are also consistent with gains in RAD51 and alkaline comet assays we previously published (Yoon et al., Stem Cell Reports 2016). The cell cycle regulator Cdkn1a (p21) is considered a canonical downstream component of the p53 response in adult FA HSC, but it also performs p53 independent functions in the RS response that coincide with its role in the nucleus. Here, we observed an increase in nuclear localization of p21 in Fancd2-/- FL HSC. TGF-β is a critical developmental morphogen that regulates p21 activity, and TGF-β inhibitors can partially reverse adult FA HSC function along with suppression of NHEJ mediated DNA repair. To test regulation of p21 in fetal HSC under RS, we first treated WT FL HSC with aphidicolin to experimentally simulate RS and found that SD208, a small molecule TGF-β-R1 inhibitor, completely rescued the p21 nuclear localization. We then went on to demonstrate that pharmacological inhibition of TGF-β signaling also reversed the nuclear p21 translocation in FA FL HSC (under physiological RS) and functionally rescued the primitive myeloid progenitor colony formation (CFU-GEMM) in vitro. Altogether, our data show that HSC deficits in FA first emerge in the fetal liver, where rapid fetal expansion causes RS that elicits pChk1 activation and nuclear p21 translocation, which restrain cell cycle progression and act as principal mechanisms limiting fetal HSC pool size in FA. Our experiments suggest a central and p53-independent role for p21 in fetal FA HSC regulation. Detailed knowledge of the physiological role of FA proteins in fetal phenotype HSC has the potential to lead to new therapies that delay or rescue hematopoietic failure in FA patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


Blood ◽  
2003 ◽  
Vol 102 (6) ◽  
pp. 2081-2084 ◽  
Author(s):  
Xiaxin Li ◽  
P. Artur Plett ◽  
Yanzhu Yang ◽  
Ping Hong ◽  
Brian Freie ◽  
...  

Abstract The pathogenesis of bone marrow failure in Fanconi anemia is poorly understood. Suggested mechanisms include enhanced apoptosis secondary to DNA damage and altered inhibitory cytokine signaling. Recent data determined that disrupted cell cycle control of hematopoietic stem and/or progenitor cells disrupts normal hematopoiesis with increased hematopoietic stem cell cycling resulting in diminished function and increased sensitivity to cell cycle–specific apoptotic stimuli. Here, we used Fanconi anemia complementation type C–deficient (Fancc–/–) mice to demonstrate that Fancc–/– phenotypically defined cell populations enriched for hematopoietic stem and progenitor cells exhibit increased cycling. In addition, we established that the defect in cell cycle regulation is not a compensatory mechanism from enhanced apoptosis occurring in vivo. Collectively, these data provide a previously unrecognized phenotype in Fancc–/– hematopoietic stem/progenitor cells, which may contribute to the progressive bone marrow failure in Fanconi anemia.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4235-4235
Author(s):  
W. Clark Lambert ◽  
Santiago A. Centurion

Abstract We have previously shown that the primary cell cycle defect in the inherited, cancer-prone, bone marrow failure associated disease, Fanconi anemia (FA), is not in the G2 phase of the cell cycle, as had been thought for many years, but rather in the S phase. FA cells challenged with the DNA cross-linking agent, psoralen coupled with long wavelength, ultraviolet (UVA) radiation (PUVA), fail to slow their progression through the S phase of the subsequent cell cycle, as do normal cells. FA cells are extremely sensitive to the cytotoxic and clastogenic effects of DNA cross-linkers, such as PUVA, so much so that the diagnosis of FA is based on an assay, the “DEB test”, in which cells are examined for clastogenic and cytotoxic effects of diepoxybutane (DEB), a DNA cross-linking agent. More recently, we have shown that artificially slowing the cell cycle of FA cells exposed to PUVA by subsequent treatment with agents which slow their progression through S phase leads to markedly increased viability and reduced chromosome breakage in vitro. We now show that similar results can be obtained in vivo in patients with another DNA repair deficiency disease, xeroderma pigmentosum (XP), a recessively inherited disorder associated with defective repair of sunlight induced adducts in the DNA of sun-exposed tissues followed by development of numerous mutations causing large numbers of cancers in these same tissues. We treated two patients with XP, a light complected black male and a white female, both 14 years of age, in sun-exposed areas with 5-fluorouracil, an inhibitor of DNA synthesis, daily for three months. In contrast to normal patients, who only show clinical results if an inflammatory response is invoked, marked improvement in the clinical appearance of the skin was seen with no inflammation observed. This effect was confirmed histologically by examining epidermis adjacent to excised lesions in sun-exposed areas and further verified by computerized image analysis. Treatment with agents that slow progression through S phase, such as hydroxyurea, may similarly improve clinical outcomes in patients with FA or others who are developing bone marrow failure.


2020 ◽  
Author(s):  
Juan A. Cantres-Velez ◽  
Justin L. Blaize ◽  
David A. Vierra ◽  
Rebecca A. Boisvert ◽  
Jada M. Garzon ◽  
...  

AbstractFanconi anemia (FA) is a rare genetic disease characterized by increased risk for bone marrow failure and cancer. The FA proteins function together to repair damaged DNA. A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins under conditions of cellular stress and during S-phase of the cell cycle. The regulatory mechanisms governing S-phase monoubiquitination, in particular, are poorly understood. In this study, we have identified a CDK regulatory phospho-site (S592) proximal to the site of FANCD2 monoubiquitination. FANCD2 S592 phosphorylation was detected by LC-MS/MS and by immunoblotting with a S592 phospho-specific antibody. Mutation of S592 leads to abrogated monoubiquitination of FANCD2 during S-phase. Furthermore, FA-D2 (FANCD2-/-) patient cells expressing S592 mutants display reduced proliferation under conditions of replication stress and increased mitotic aberrations, including micronuclei and multinucleated cells. Our findings describe a novel cell cycle-specific regulatory mechanism for the FANCD2 protein that promotes mitotic fidelity.Author SummaryFanconi anemia (FA) is a rare genetic disease characterized by high risk for bone marrow failure and cancer. FA has strong genetic and biochemical links to hereditary breast and ovarian cancer. The FA proteins function to repair DNA damage and to maintain genome stability. The FANCD2 protein functions at a critical stage of the FA pathway and its posttranslational modification is defective in >90% of FA patients. However, the function, and regulation of FANCD2, particularly under unperturbed cellular conditions, remains remarkably poorly characterized. In this study, we describe a novel mechanism of regulation of the FANCD2 protein during S-phase of the cell cycle. CDK-mediated phosphorylation of FANCD2 on S592 promotes the ubiquitination of FANCD2 during S-phase. Disruption of this phospho-regulatory mechanism results in compromised mitotic fidelity and an increase in mitotic chromosome instability.


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5140-5148 ◽  
Author(s):  
Qing-Shuo Zhang ◽  
Laura Marquez-Loza ◽  
Laura Eaton ◽  
Andrew W. Duncan ◽  
Devorah C. Goldman ◽  
...  

Abstract Progressive bone marrow failure is a major cause of morbidity and mortality in human Fanconi Anemia patients. In an effort to develop a Fanconi Anemia murine model to study bone marrow failure, we found that Fancd2−/− mice have readily measurable hematopoietic defects. Fancd2 deficiency was associated with a significant decline in the size of the c-Kit+Sca-1+Lineage− (KSL) pool and reduced stem cell repopulation and spleen colony-forming capacity. Fancd2−/− KSL cells showed an abnormal cell cycle status and loss of quiescence. In addition, the supportive function of the marrow microenvironment was compromised in Fancd2−/− mice. Treatment with Sirt1-mimetic and the antioxidant drug, resveratrol, maintained Fancd2−/− KSL cells in quiescence, improved the marrow microenvironment, partially corrected the abnormal cell cycle status, and significantly improved the spleen colony-forming capacity of Fancd2−/− bone marrow cells. We conclude that Fancd2−/− mice have readily quantifiable hematopoietic defects, and that this model is well suited for pharmacologic screening studies.


2016 ◽  
Vol 18 (5) ◽  
pp. 668-681 ◽  
Author(s):  
Haojian Zhang ◽  
David E. Kozono ◽  
Kevin W. O’Connor ◽  
Sofia Vidal-Cardenas ◽  
Alix Rousseau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document