Effectiveness, Time Utilization and Clinical Outcome of Partial Manual Red Cell Exchange in Patients with Sickle Cell Disease

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2326-2326
Author(s):  
Kevin H.M. Kuo ◽  
David Barth ◽  
Richard Ward

Abstract Abstract 2326 Introduction: Red cell exchange transfusion (RBCX) is used to treat and prevent selected complications from Sickle Cell Disease (SCD) where there is a need to reduce hemoglobin S level, blood viscosity, improve oxygen carrying capacity, and to avoid rapid iron overload from simple transfusions. Partial manual red cell exchange is sometimes employed in the chronic maintenance of low hemoglobin S levels. Data on the efficacy and clinical outcome of SCD patients on partial manual RBCX are limited. Methods: All partial manual RBCX from the University Health Network, a SCD comprehensive care center between April 1st, 2010 and April 30th, 2011 were retrospectively reviewed. Patients were exchanged at a frequency of 4 to 6 weeks where each session consists of two 500cc phlebotomy with an infusion of 500cc normal saline in between the phlebotomies, and transfusion of 2 units of packed red cells (pRBC). The procedure was repeated until pre-RBCX hemoglobin S (HbS) level <50% was reached (for patients without overt stroke for >4 years). Phlebotomy was reduced or omitted during episodes of symptomatic anemia at the discretion of the treating hematologist. Patients with poor venous access had indwelling line with chronic, therapeutic anticoagulation against line-related thrombosis. Results: Nineteen patients (16 HbSS, 2 HbSC, 1 HbSD) totalling 176 exchange sessions were reviewed. Indications for RBCX include primary and secondary stroke prevention (n = 14), recurrent painful vaso-occlusive crises intolerant or refractory to hydroxyurea (n = 3), pulmonary hypertension confirmed on right heart catheterization with hypoxia (n = 1), and prevention of intrahepatic cholestasis in a liver allograft (n = 1). Mean frequency of RBCX was 4.8 weeks (95% CI 3.9, 5.6 weeks). There were 2 transfusion-related (fever, pruritis) and 1 phlebotomy-related (pre-syncope) adverse events. There were 23 partial/cancelled phlebotomy sessions, mostly due to symptomatic anemia. Mean post-RBCX hematocrit was 0.296 (95% CI 0.280, 0.312) and pre-RBCX HbS level was 0.439 (95% CI 0.387, 0.490). Pre-RBCX HbS level of <50% was achieved in 74% of exchanges. Reasons for not achieving the target HbS level include: exchange interval >4.0 weeks, not on any transfusion regime prior to initiating partial manual RBCX, reduced or no phlebotomy in previous session, and non-adherence to treatment. Patients who were adherent to treatment had no recurrent events related to their initial indication for RBCX (one patient has possible Moyamoya formation but no clinically overt stroke), while 3 of the 6 patients who were not adherent had events during the study period (2 had painful vaso-occlusive crisis requiring hospital admission and 1 had new Moyamoya-like changes on cerebral angiogram). It took a median time of 90 minutes to phlebotomize 1,000cc whole blood and 176 minutes to transfuse two units of pRBC. There was no significant difference between the time required to phlebotomize or transfuse via peripheral vein versus an indwelling line (55 vs. 53 minutes/500cc; P = 0.7572 and 88 minutes vs. 88 minutes/unit; P = 0.9859). Eleven patients were also on iron chelation therapy for iron overload from previous simple transfusion, and patients who were adherent to RBCX (n = 7) had either a stable or reduction in ferritin level. Discussion: Patients who are adherent on partial manual RBCX can maintain a pre-RBCX HbS <50% with good clinical outcomes and low rates of adverse events, reduced blood consumption compared to automated RBCX, and obviate the need for ongoing iron chelation in those without pre-existing iron overload. In patients with iron overload, RBCX combined with iron chelation therapy can maintain iron balance. In patients with good peripheral venous access, indwelling lines do not confer an advantage to the speed of phlebotomy or transfusion. Patient with pre-RBCX HbS level >50% may benefit from a single session of automated RBCX to “reset” their HbS level before commencing chronic partial manual RBCX. Further prospective studies will aim to determine the rate of new or progressive silent infarcts and vasculopathy and reduction of iron balance via partial manual RBCX. Disclosures: Kuo: Novartis Canada: Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2671-2671
Author(s):  
Ismael Shaukat ◽  
Faraz Khan ◽  
Andrew Eisenberger ◽  
Marcus Stevenson ◽  
Alice J. Cohen

Abstract Abstract 2671 Background: Red cell transfusions play an integral role in the treatment and prevention of serious complications related to sickle cell disease. It has been shown that in other hemoglobinopathies, such as β-Thalassemia, patients (pts) suffer from iron overload which can result in end organ damage. There is concern that heavily transfused sickle cell pts may also develop iron overload with consequent morbidity and mortality. While pediatric pts routinely receive blood transfusions and iron chelation therapy, adult pts often discontinue chronic transfusion programs and are transfused sporadically. These pts may not receive routine iron chelation therapy. Methods: A retrospective review of our sickle cell database from 1988–2010 which also included those pts who were not routinely followed at the comprehensive sickle cell clinic. Adult pts (>18 yrs of age) with serum ferritin (SF) levels >1000 ng/ml (criteria for iron overload in our institution) were identified and use of iron chelation was reviewed in this population. Clinical characteristics evaluated were age, type of sickle cell disease, frequency of transfusions (chronic vs. sporadic), total units transfused, use and type of chelation, as well as reasons for non-use of chelation therapy. Results: 65/170(38%) pts were identified with SF >1000. The mean age is 33 years (range 19–70). 38/65 (59%) have the SS phenotype, 25/65 (38%) have the Sβ phenotype and 2/65 (3%) have the SC phenotype. The mean SF is 3697 ng/ml (range 1012–14312). Of those pts considered to have iron overload, 28/65 (43%) were treated with iron chelation: 27/65 (42%) received deferasirox and 1/65 (2%) received deferoxamine. Of the untreated pts, 24/37 (65%) had no identifiable reason for lack of chelation therapy, 10/37 (27%) had renal dysfunction, 1/37(3%) had hepatic impairment. 16/65 (25%) were transfused chronically, while 49/65 (75 %) were transfused sporadically. Chronically transfused pts received a mean of 81 units throughout their lifetime, while sporadically transfused pts received 30 units (p=0.01). The mean SF for chronically transfused pts was 5891, while the mean SF for pts transfused sporadically was 2981 (p=0.01). Of pts transfused chronically, 11/16 (69%) were on chelation therapy. Of the pts receiving sporadic transfusions, only 16/49 (33%) were on iron chelation (p= 0.01). In all pts chronically transfused, the reason for non-use of chelation therapy was renal dysfunction. In sporadically transfused pts, 33/49 (51%) had no identifiable reason for lack of chelation therapy. Conclusion: SF levels are significantly lower in pts who are sporadically transfused, though levels are high. Adult pts receiving sporadic transfusions are not routinely receiving iron chelation therapy despite elevated SF. The need for chelation therapy in both sporadically and chronically transfused pts remains to be determined. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 85 (10) ◽  
pp. 782-786 ◽  
Author(s):  
Adlette Inati ◽  
Evelyne Khoriaty ◽  
Khaled M. Musallam ◽  
Ali T. Taher

2018 ◽  
Vol 93 (7) ◽  
pp. 943-952 ◽  
Author(s):  
Samir K. Ballas ◽  
Amer M. Zeidan ◽  
Vu H. Duong ◽  
Michelle DeVeaux ◽  
Matthew M. Heeney

Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 1136-1142 ◽  
Author(s):  
HC Kim ◽  
NP Dugan ◽  
JH Silber ◽  
MB Martin ◽  
E Schwartz ◽  
...  

Abstract Chelation therapy with deferoxamine is effective in preventing the risk of transfusional iron overload, but treatment failure is common because of noncompliance. To reduce the transfusional iron load, we have evaluated longterm erythrocytapheresis in 14 subjects with sickle cell disease and stroke (11) or other complications (3) as an alternative to simple transfusion. Subjects were treated with erythrocytapheresis using the Haemonetics V50 (Haemonetics Corp, Braintree, MA) to maintain the target pretransfusion hemoglobin S (Hb S) level less than 50% for 6 to 71 months. The transfusional iron load and the donor blood usage were analyzed for a 6- to 36-month study period and were compared with similar data from a subset of 7 subjects previously treated with conventional (target Hb S < 30%) and modified (target Hb S < 50%) simple transfusion protocols. The effect of erythrocytapheresis on iron accumulation was determined by assessment of serum ferritin levels in the absence of iron chelation. The mean transfusional iron load and donor blood usage with erythrocytapheresis were 19 +/- 14 mg iron/kg/yr (range, 6 to 50) and 188.4 +/- 55.2 mL packed-red blood cells (RBC)/kg/yr (range, 107 to 281), respectively. Of 6 subjects receiving no iron chelation therapy, 5 maintained normal or nearly normal serum ferritin levels during 11 to 36 months of erythrocytapheresis. In comparison with conventional simple transfusion and modified simple transfusion, erythrocytapheresis reduced iron loading by 87% (P < .01) and 82% (P < .01), respectively, but increased donor blood usage by 23% and 73%, respectively. Subjects with pre-erythrocytapheresis Hb levels > or = 8.0 g/dL had lower iron accumulation (P < .001) and less donor blood usage (P < .005) than subjects with Hb levels < or = 8.0 g/dL. Although donor blood usage is increased in comparison with simple transfusion, long-term erythrocytapheresis markedly reduces or prevents iron accumulation. This form of transfusion therapy allows the cessation of iron chelation in well-chelated subjects and, if used as the initial form of transfusion therapy, may prevent long-term complications of sickle cell disease without risk of iron overload and the need for chelation therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4850-4850
Author(s):  
Mansi Lalwani ◽  
Mary DeBarr ◽  
Ann O'Riordan Mary ◽  
Connie M Piccone ◽  
Brian W Berman

Abstract Abstract 4850 Introduction: Nearly 100,000 Americans are affected by sickle cell disease (SCD), making it one of the most prevalent genetic disorders in the United States. Individuals with SCD exhibit significant morbidity and mortality related to chronic hemolysis, vasculopathy, and vascular occlusion by red cell sickling. Currently, red cell transfusions are a primary therapy for some of the acute and chronic complications of SCD, including prevention and treatment of stroke. The benefits of transfusion therapy are well known; however, transfusional iron overload is an inevitable consequence. Excess iron in the circulation leads to the formation of reactive oxygen species which ultimately causes end-organ damage. It is well established that adult SCD patients with significant iron overload have a higher mortality. As a result, exchange transfusion protocols are utilized to try to decrease overall iron overload. In our center, a modified manual exchange (MME) protocol is used which involves therapeutic phlebotomy of approximately 5–7.5ml/kg followed by the infusion of 15–20ml/kg packed red blood cells. MME is performed in the outpatient setting every 4–6 weeks with a goal hemoglobin S of less than 30%. Objective: The primary objective of our study was to describe the benefits of a MME protocol compared with a simple transfusion protocol in patients experiencing both. The effects of MME versus simple tranfusion on systemic iron overload were evaluated using serum ferritin levels, net transfusion volume, and need for iron chelation therapy. Study Design/Methods: A retrospective chart review was performed on patients with SCD (type SS) less than 18 years of age who were on chronic transfusions and transitioned from a simple to a MME protocol. All patients included were on chronic transfusions for primary/secondary stroke prevention. Exclusion criteria included all patients on automated exchange transfusion protocols and those patients who started iron chelation therapy after January 1, 2008. Demographic as well as clinical and laboratory data were collected on each patient. A simple transfusion was defined as 20ml/kg packed red blood cells transfused every 4–6 weeks. The MME protocol was defined as above. Iron overload was assessed using indicators including net volume of blood transfused, serum ferritin, and the need for iron chelation during both time periods, and differences were calculated. The Wilcoxon signed rank test was used for the change in amount of blood transfused. Slopes of ferritin levels over time were estimated for each transfusion protocol separately using mixed model methods. The need for chelation therapy was tabulated for each patient. Results: A total of six patients were included in the study, 4 boys and 2 girls. Ages ranged from 6–14 years. Four patients had been on chronic transfusions for more than 2 years prior to the start of our study. The mean net volume transfused during simple transfusion and MME was 400ml and 290ml, respectively (p=0.03). The slope of ferritin rise was 0.18 (CI: 0.11, 0.84) for MME and 1.37 (CI: 0.56, 2.17) for simple transfusion. One patient was taken off chelation therapy completely after transitioning to MME and another patient was maintained on low-dose chelation while on MME. Conclusions: MME appears to reduce the amount of blood transfused, slow the rise of ferritin, and potentially reduce the need for additional medication. MME may provide a safe and cost effective approach for delaying or preventing iron overload in patients with sickle cell disease who require long term transfusion therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2106-2106
Author(s):  
Lanetta B Jordan ◽  
Patricia Adams-Graves ◽  
Julie Kanter-Washko ◽  
Patricia Ann Oneal ◽  
Francis Vekeman ◽  
...  

Abstract Abstract 2106 Introduction: Over the past few decades, lifespans of sickle cell disease (SCD) patients have increased; hence, they encounter multiple complications. Early detection, appropriate comprehensive care, and treatment may prevent or delay onset of complications. There is a gap in the literature describing the SCD complication rates, blood transfusion patterns, iron chelation therapy (ICT) use, and associated resource utilization in SCD patients ≥16 years old. This study contributes to addressing this gap. Method: Medical records of 254 SCD patients ≥ 16 were retrospectively reviewed between August 2011 and July 2012 at three US tertiary care centers (University of Tennessee: 117; Tulane University: 72; Howard University: 65). Data were collected from patient's first visit after age 16 (index date) until the earliest indication of death, loss to follow-up, or last patient record on file prior to the centers' IRB submission dates. Patients were classified into one of three cohorts based on cumulative units of blood transfused and history of ICT: <15 units of blood and no ICT (minimally transfused, Cohort 1 [C1]), ≥15 units of blood and no ICT (Cohort 2 [C2]), and ≥15 units of blood and receiving ICT (Cohort 3 [C3]). SCD complication rates were expressed as the number of SCD complications recorded from patient charts per patient per year (PPPY) and compared among cohorts using rate ratios (RRs). Results: Cohorts 1, 2, and 3 consisted of 69, 91, and 94 patients, respectively. Mean (range) age at index date was similar across cohorts (27 yrs [16–65]) and all patients were African American. Mean length of observation was shorter among patients in C1 (yrs, C1: 6.6; C2: 8.2; C3: 8.1). Post index date, patients in C1 received an average of 1 unit of blood PPPY (p<0.001 vs. C2 and C3), whereas patients in C2 and C3 received an average of 10 and 15 units PPPY (p=0.112), respectively. Among patients with serum ferritin (SF) assessment within 60 days before ICT (n=57), mean (median) SF level was 4,881 ng/mL (4,040). Across all three cohorts, the most common SCD complication was acute pain crisis (69.8%), followed by infection/sepsis (5.1%), leg ulcers (2.9%), and avascular necrosis (2.3%). The rate (95% CI) of any SCD complications was the highest in C2 at 3.02 PPPY (2.89–3.14), followed by 2.26 PPPY (2.16–2.37) in C3, and 1.66 PPPY (1.54–1.77) in C1 (Table 1). Among transfused patients (C2+C3), those receiving ICT were less likely to experience SCD complications than those who did not (RR [95% CI] C2 vs. C3: 1.33 [1.25–1.42]). Similar trends (RR [95% CI]) were observed in emergency room (ER) visits and hospitalizations associated with SCD complications (C2 vs. C3, ER: 1.94 [1.70–2.21]; hospitalizations: 1.61 [1.45–1.78]), but not in outpatient visits. Conclusion: Results from this study highlight the significant burden of complications and the associated healthcare resource utilization for SCD patients. The results suggest that among regularly transfused patients, those who received ICT were less likely to experience complications than those without ICT. However, transfusions are not necessary for all patients with SCD and patients with more complications may have started transfusion therapy earlier. Patients receiving ICT may also receive closer monitoring, which may help with early identification and intervention to delay or prevent the development of complications and improve outcomes. Disclosures: Jordan: Novartis Pharmaceuticals Corporation: Consultancy, Speakers Bureau. Oneal:Novartis Pharmaceuticals Corporation: Honoraria. Vekeman:Novartis Pharmaceuticals: Research Funding. Bieri:Novartis Pharmaceuticals Corporation: Research Funding. Sasane:Novartis Pharmaceuticals: Employment. Marcellari:Novartis Pharmaceuticals Corporation: Employment. Magestro:Novartis Pharmaceuticals: Employment. Gorn:Novartis Pharmaceuticals Corporation: Research Funding. Duh:Novartis Pharmaceuticals: Research Funding.


2010 ◽  
pp. 689-744 ◽  
Author(s):  
Janet L. Kwiatkowski ◽  
John B. Porter ◽  
Martin H. Steinberg ◽  
Bernard G. Forget ◽  
Douglas R. Higgs ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1517-1517
Author(s):  
Ersi Voskaridou ◽  
Eleni Plata ◽  
Panagiota Stefanitsi ◽  
Marousa Douskou ◽  
Dimitrios Christoulas ◽  
...  

Abstract Abstract 1517 Poster Board I-540 Iron overload was not thought to be an important issue in sickle cell disease (SCD) in the past because of the short life-span of SCD patients. However, the increase in longevity during the recent years has been associated with clinical evidence of iron overload in some SCD patients due to accumulation of transfusional iron, increased absorption associated with intensive erythropoiesis and iron deposition as a result of continuous hemolysis. Therefore, iron overload may play an important role in the severity of SCD and iron chelation has a definite indication in several SCD cases. Thalassemia intermedia (TI) encompasses a wide clinical spectrum of beta-thalassemia phenotypes. Iron overload is alsofrequently present in TI patients as a result of increased intestinal iron absorption secondary to chronic anemia and to sporadic blood transfusion therapy, which may be administered intermittently when hemoglobin (Hb) levels fall <7 g/dL. Thus, a variable rate of iron loading, reaching toxic levels in some patients, was seen in a series of intermittently transfused TI patients who need adequate chelation therapy. Deferasirox (Exjade®) is a once-daily orally administered iron chelator approved for the treatment of transfusional iron overload in patients with transfusion-dependent anemia. Here, we report on the efficacy and safety of deferasirox in iron-overloaded patients with SCD and TI. We evaluated 18 adult patients with SCD (8M/10F; mean age 41.3 ± 8.5 years) and 11 with TI (5M/6F; mean age 41.2 ± 6.5 years) who had serum ferritin levels >1000 ng/mL and who were sporadically transfused with <20 units of red blood cells before starting deferasirox treatment for up to 12 months. Twenty-four patients (15 with SCD and 9 with TI) and 5 (3 with SCD and 2 with TI) patients were initially treated with deferasirox at 10 and 20 mg/kg/day, respectively, based on the number of blood transfusions received before the initiation of treatment. After 3 months, dose adjustments (increases) were allowed in increments of 5 mg/kg/day every 3 months as required to reduce markers of iron overload. Total iron burden was monitored by measuring serum ferritin levels before and monthly after starting deferasirox, while liver iron concentration and cardiac iron burden were measured by magnetic resonance imaging (MRI) T2 and T2* parameters at baseline and 12 months after deferasirox treatment. Left ventricular ejection fraction (LVEF) by MRI, and 24-hour proteinurea (Prot 24h) before and after treatment, were also measured. Hb levels, serum creatinine, cystatin-C (a sensitive marker of renal impairment), alanine (ALT) and aspartate aminotransferase (AST) were measured before and every month during deferasirox treatment. Serum ferritin level was significantly reduced after 12 months of deferasirox treatment in both SCD (mean±SD: from 1993±997 ng/ml to 1106±1016 ng/ml, p<0.001) and TI patients (from 2030±1040 ng/ml to 1165±684 ng/ml, p=0.02). Similarly baseline liver T2 and T2* significantly increased following 12 months of therapy in SCD (from 21.1±5.7 ms to 27.4±8.0 ms, p=0.001 and from 4.1±3.8 ms to 6.0±3.4 ms, p=0.013, for T2 and T2* respectively) and TI patients (from 20.1±4.1 ms to 23.7±6.2 ms, p=0.01 and from 3.4±3.0 ms to 4.4±3.0 ms, p=0.02, for T2 and T2* respectively). Mean cardiac T2* and LVEF were normal at baseline and did not significantly change after 12 months of treatment in SCD and TI patients. There were also no significant changes in mean serum creatinine, Hb or Prot 24h levels after 12 months of deferasirox treatment, while mean ALT and AST levels significantly decreased over 12 months in both groups of patients (p<0.02 and p<0.04 for SCD and TI, respectively). In terms of cystatin-C, there was a significant increase after 12 months of treatment in SCD patients (from 0.97±0.32 mg/l to 1.12±0.4 mg/l, p<0.001) but not in TI patients, in whom the increase was of borderline significance (from 0.98±0.23 mg/l to 1.13±0.27 mg/l, p=0.094). These data indicate that, over 12 months, deferasirox significantly reduced liver iron burden and serum ferritin levels in these iron-overloaded patients with SCD and TI. The decreases in ALT and AST are suggestive of an improvement in liver function, while there must be some caution for renal impairment, mainly in SCD. This study indicates that deferasirox provides effective iron chelation therapy in these patients without any significant adverse effects. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document