scholarly journals Effects of recombinant human granulocyte colony-stimulating factor (CSF), human granulocyte macrophage-CSF, and gibbon interleukin-3 on hematopoiesis in human long-term bone marrow culture

Blood ◽  
1990 ◽  
Vol 75 (11) ◽  
pp. 2118-2129 ◽  
Author(s):  
LH Coutinho ◽  
A Will ◽  
J Radford ◽  
R Schiro ◽  
NG Testa ◽  
...  

We have studied the effects of recombinant human granulocyte colony- stimulating factor (rhG-CSF), hG macrophage-CSF (hGM-CSF), and gibbon interleukin-3 (gIL-3) on cell proliferation and differentiation in human long-term bone marrow culture (LTBMC). hG-CSF induced a maximal increase of 2.3-fold in both total nonadherent cells and GM cluster- forming cells, but only an increase of 1.7-fold in GM-colony-forming cell (GM-CFC) numbers, influencing mainly neutrophil differentiation. Cultures treated with hGM-CSF demonstrated a peak of 12.8-, 21- and 3.2- fold elevations in total nonadherent cells, cluster, and GM-CFC, respectively, and influenced differentiation of neutrophils, monocytes, eosinophils, and lymphocytes. Cultures treated with gIL-3 demonstrated the largest expansion in the GM-CFC population, reaching a maximum of 5.3-fold in relation to that of unstimulated controls. IL-3 treatment also increased the numbers of GM clusters and mature cells (including all myeloid cells and lymphocytes) 7.8- and 4.8-fold, respectively. Similar quantitative and qualitative changes were induced by G-CSF, GM- CSF, and IL-3 in LTBMCs of patients in remission after treatment for acute lymphoblastic leukemia or Hodgkin's lymphoma. Overall, the expansion of GM progenitor cells in cultures treated with growth factors was larger in the adherent cell layer than in the nonadherent cell fraction. In addition, hGM-CSF, gIL-3, and hG-CSF to a less extent, increased the cycling rates of GM-CFC progenitors located in the adherent layer. These results indicate that hG-CSF is a much less potent stimulus of hematopoiesis in LTBMC than the other CSFs assayed, and that the increases in cell production after treatment with G-CSF, GM-CSF, or IL-3 may be achieved by primary expansion of different cell populations within the hierarchy of the hematopoietic system. The effects of the growth factors were transient and the longevity of hematopoiesis in the cultures was not altered, suggesting that treatment with IL-3, GM-CSF, or G-CSF had not compromised the ability of primitive cells to give rise to mature cells. This indicates that the stromal microenvironment in LTBMC can override potential differentiation-inducing activities of the CSFs.

Blood ◽  
1990 ◽  
Vol 75 (11) ◽  
pp. 2118-2129 ◽  
Author(s):  
LH Coutinho ◽  
A Will ◽  
J Radford ◽  
R Schiro ◽  
NG Testa ◽  
...  

Abstract We have studied the effects of recombinant human granulocyte colony- stimulating factor (rhG-CSF), hG macrophage-CSF (hGM-CSF), and gibbon interleukin-3 (gIL-3) on cell proliferation and differentiation in human long-term bone marrow culture (LTBMC). hG-CSF induced a maximal increase of 2.3-fold in both total nonadherent cells and GM cluster- forming cells, but only an increase of 1.7-fold in GM-colony-forming cell (GM-CFC) numbers, influencing mainly neutrophil differentiation. Cultures treated with hGM-CSF demonstrated a peak of 12.8-, 21- and 3.2- fold elevations in total nonadherent cells, cluster, and GM-CFC, respectively, and influenced differentiation of neutrophils, monocytes, eosinophils, and lymphocytes. Cultures treated with gIL-3 demonstrated the largest expansion in the GM-CFC population, reaching a maximum of 5.3-fold in relation to that of unstimulated controls. IL-3 treatment also increased the numbers of GM clusters and mature cells (including all myeloid cells and lymphocytes) 7.8- and 4.8-fold, respectively. Similar quantitative and qualitative changes were induced by G-CSF, GM- CSF, and IL-3 in LTBMCs of patients in remission after treatment for acute lymphoblastic leukemia or Hodgkin's lymphoma. Overall, the expansion of GM progenitor cells in cultures treated with growth factors was larger in the adherent cell layer than in the nonadherent cell fraction. In addition, hGM-CSF, gIL-3, and hG-CSF to a less extent, increased the cycling rates of GM-CFC progenitors located in the adherent layer. These results indicate that hG-CSF is a much less potent stimulus of hematopoiesis in LTBMC than the other CSFs assayed, and that the increases in cell production after treatment with G-CSF, GM-CSF, or IL-3 may be achieved by primary expansion of different cell populations within the hierarchy of the hematopoietic system. The effects of the growth factors were transient and the longevity of hematopoiesis in the cultures was not altered, suggesting that treatment with IL-3, GM-CSF, or G-CSF had not compromised the ability of primitive cells to give rise to mature cells. This indicates that the stromal microenvironment in LTBMC can override potential differentiation-inducing activities of the CSFs.


Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 523-532 ◽  
Author(s):  
WP Hammond ◽  
TC Boone ◽  
RE Donahue ◽  
LM Souza ◽  
DC Dale

Cyclic hematopoiesis in gray collie dogs is a stem cell disease in which abnormal regulation of cell production in the bone marrow causes cyclic fluctuations of blood cell counts. In vitro studies demonstrated that recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and granulocyte colony stimulating factor (G-CSF) all stimulated increases in colony formation by canine bone marrow progenitor cells. Based on these results, gray collie dogs were then treated with recombinant human (rh) GM-CSF, IL-3, or G-CSF subcutaneously to test the hypothesis that pharmacologic doses of one of these hematopoietic growth factors could alter cyclic production of cells. When recombinant canine G-CSF became available, it was tested over a range of doses. In vivo rhIL-3 had no effect on the recurrent neutropenia but was associated with eosinophilia, rhGM-CSF caused neutrophilia and eosinophilia but cycling of hematopoiesis persisted. However, rhG-CSF caused neutrophilia, prevented the recurrent neutropenia and, in the two animals not developing antibodies to rhG- CSF, obliterated periodic fluctuation of monocyte, eosinophil, reticulocyte, and platelet counts. Recombinant canine G-CSF increased the nadir neutrophil counts and amplitude of fluctuations at low doses (1 micrograms/kg/d) and eliminated all cycling of cell counts at high doses (5 and 10 micrograms/kg/d). These data suggest significant differences in the actions of these growth factors and imply a critical role for G-CSF in the homeostatic regulation of hematopoiesis.


Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 523-532 ◽  
Author(s):  
WP Hammond ◽  
TC Boone ◽  
RE Donahue ◽  
LM Souza ◽  
DC Dale

Abstract Cyclic hematopoiesis in gray collie dogs is a stem cell disease in which abnormal regulation of cell production in the bone marrow causes cyclic fluctuations of blood cell counts. In vitro studies demonstrated that recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and granulocyte colony stimulating factor (G-CSF) all stimulated increases in colony formation by canine bone marrow progenitor cells. Based on these results, gray collie dogs were then treated with recombinant human (rh) GM-CSF, IL-3, or G-CSF subcutaneously to test the hypothesis that pharmacologic doses of one of these hematopoietic growth factors could alter cyclic production of cells. When recombinant canine G-CSF became available, it was tested over a range of doses. In vivo rhIL-3 had no effect on the recurrent neutropenia but was associated with eosinophilia, rhGM-CSF caused neutrophilia and eosinophilia but cycling of hematopoiesis persisted. However, rhG-CSF caused neutrophilia, prevented the recurrent neutropenia and, in the two animals not developing antibodies to rhG- CSF, obliterated periodic fluctuation of monocyte, eosinophil, reticulocyte, and platelet counts. Recombinant canine G-CSF increased the nadir neutrophil counts and amplitude of fluctuations at low doses (1 micrograms/kg/d) and eliminated all cycling of cell counts at high doses (5 and 10 micrograms/kg/d). These data suggest significant differences in the actions of these growth factors and imply a critical role for G-CSF in the homeostatic regulation of hematopoiesis.


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 493-499 ◽  
Author(s):  
DE Hogge ◽  
JD Cashman ◽  
RK Humphries ◽  
CJ Eaves

Abstract The ability of granulocyte-macrophage colony-stimulating factor (GM- CSF) and G-CSF to influence hematopoiesis in long-term cultures (LTC) of human marrow was studied by cocultivating light density normal human marrow cells with human marrow fibroblast feeders engineered by retroviral infection to constitutively produce one of these growth factors. Feeders producing stable levels of 4 ng/mL GM-CSF or 20 ng/mL G-CSF doubled the output of mature nonadherent cells. The numbers of both colony forming unit-GM (CFU-GM) and erythroid burst forming unit (BFU-E) in the G-CSF LTC were also increased (twofold and fourfold, respectively, after 5 weeks in culture), but this effect was not seen with the GM-CSF feeders. At the time of the weekly half medium change 3H-thymidine suicide assays showed primitive adherent layer progenitors in LTC to be quiescent in both the control and GM-CSF cultures. In contrast, in the G-CSF cultures, a high proportion of primitive progenitors were in S-phase. A single addition of either recombinant GM- CSF or G-CSF to LTC in doses as high as 80 ng/mL and 150 ng/mL, respectively, failed to induce primitive progenitor cycling. However, three sequential daily additions of 150 ng/mL G-CSF did stimulate primitive progenitors to enter S-phase and a single addition of 5 or 12.5 ng/mL of G-CSF together with 10 ng/mL GM-CSF was able to elicit the same effect. Thus, selective elevation of G-CSF in human LTC stimulates proliferation of primitive clonogenic progenitors, which may then proceed through to the terminal stages of granulopoiesis. In contrast, the effects of GM-CSF in this system appear limited to terminally differentiating granulopoietic cells. However, when both GM- CSF and G-CSF are provided together, otherwise biologically inactive doses show strong stimulatory activity. These findings suggest that the production of both of these growth factors by normal stromal cells may contribute to the support and proliferation of hematopoietic cells, not only in LTC, but also in the microenvironment of the marrow in vivo.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

Abstract The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2479-2485 ◽  
Author(s):  
CP Stahl ◽  
EF Winton ◽  
MC Monroe ◽  
E Haff ◽  
RC Holman ◽  
...  

Abstract Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) following interleukin-3 (IL-3) priming has been shown to increase thrombopoiesis. To elucidate the comparative abilities of IL-3 and GM- CSF in influencing megakaryocyte development in vivo, serial bone marrow analyses were performed on rhesus monkeys treated with 5 micrograms/kg/d of IL-3 and 5 micrograms/kg/d of GM-CSF sequentially for 4 days each, simultaneously for 8 days, and as single agents for 8 days. Platelet counts maximally increased to a mean of 7.5 x 10(5)/microL (n = 3) on days 11 through 12 in monkeys treated with sequential IL-3/GM-CSF. In contrast, neither IL-3 alone nor simultaneously administered IL-3/GM-CSF elicited increases in thrombopoiesis between days 3 and 15. GM-CSF elicited a variable platelet response. Megakaryocyte ploidy distributions were significantly (P < .001) shifted between days 7 and 10 in monkeys treated sequentially and between days 3 and 15 in monkeys treated with combined IL-3/GM-CSF and with GM-CSF alone but not in monkeys treated with IL-3 alone. The changes in mean DNA content and megakaryocyte size, as determined by digital image analysis, were larger in monkeys treated with sequential IL-3/GM-CSF and with GM-CSF alone than in simultaneously treated monkeys. In addition, sequentially but not simultaneously treated monkeys showed increased numbers of megakaryocytes on bone marrow biopsy. We conclude that administration of IL-3 followed by GM-CSF treatment increases thrombopoiesis by sequentially increasing megakaryocyte numbers and maturation and that these effects are diminished by simultaneous administration of the two cytokines.


Blood ◽  
1992 ◽  
Vol 80 (7) ◽  
pp. 1673-1678 ◽  
Author(s):  
E Naparstek ◽  
Y Hardan ◽  
M Ben-Shahar ◽  
A Nagler ◽  
R Or ◽  
...  

We studied an alternative method of using hematopoietic growth factors (HGFs) to enhance hematopoietic recovery in patients undergoing bone marrow transplantation (BMT), by short in vitro preincubation. Twenty consecutive patients with leukemia received T-cell-depleted allografts using Campath-1G. Two thirds of the marrow was infused on the scheduled day of transplant and one third of the marrow following preincubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) on day 4. Engraftment parameters and duration of hospitalization were compared by actuarial analysis to those of 40 historical controls. Patients receiving the incubated boost had significantly faster platelet recovery (P = .017) and shorter hospitalization period (P = .001) when compared with the control subjects. Platelet count reached greater than 25 x 10(9)/L on day 17 (median) in the study group and on day 23 in the controls. The median duration of hospitalization was 20 and 36 days, respectively. In the early posttransplantation follow-up, two of four patients in the study group died as a result of graft rejection, while all 13 deaths in the control group resulted from complications associated with marrow suppression. We suggest that pretransplant in vitro activation of bone marrow cells with IL-3 and GM-CSF may prove to be an efficient method for enhancing marrow recovery after BMT.


Sign in / Sign up

Export Citation Format

Share Document