scholarly journals Differential effects of sequential, simultaneous, and single agent interleukin-3 and granulocyte-macrophage colony-stimulating factor on megakaryocyte maturation and platelet response in primates

Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2479-2485
Author(s):  
CP Stahl ◽  
EF Winton ◽  
MC Monroe ◽  
E Haff ◽  
RC Holman ◽  
...  

Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) following interleukin-3 (IL-3) priming has been shown to increase thrombopoiesis. To elucidate the comparative abilities of IL-3 and GM- CSF in influencing megakaryocyte development in vivo, serial bone marrow analyses were performed on rhesus monkeys treated with 5 micrograms/kg/d of IL-3 and 5 micrograms/kg/d of GM-CSF sequentially for 4 days each, simultaneously for 8 days, and as single agents for 8 days. Platelet counts maximally increased to a mean of 7.5 x 10(5)/microL (n = 3) on days 11 through 12 in monkeys treated with sequential IL-3/GM-CSF. In contrast, neither IL-3 alone nor simultaneously administered IL-3/GM-CSF elicited increases in thrombopoiesis between days 3 and 15. GM-CSF elicited a variable platelet response. Megakaryocyte ploidy distributions were significantly (P < .001) shifted between days 7 and 10 in monkeys treated sequentially and between days 3 and 15 in monkeys treated with combined IL-3/GM-CSF and with GM-CSF alone but not in monkeys treated with IL-3 alone. The changes in mean DNA content and megakaryocyte size, as determined by digital image analysis, were larger in monkeys treated with sequential IL-3/GM-CSF and with GM-CSF alone than in simultaneously treated monkeys. In addition, sequentially but not simultaneously treated monkeys showed increased numbers of megakaryocytes on bone marrow biopsy. We conclude that administration of IL-3 followed by GM-CSF treatment increases thrombopoiesis by sequentially increasing megakaryocyte numbers and maturation and that these effects are diminished by simultaneous administration of the two cytokines.

Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2479-2485 ◽  
Author(s):  
CP Stahl ◽  
EF Winton ◽  
MC Monroe ◽  
E Haff ◽  
RC Holman ◽  
...  

Abstract Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) following interleukin-3 (IL-3) priming has been shown to increase thrombopoiesis. To elucidate the comparative abilities of IL-3 and GM- CSF in influencing megakaryocyte development in vivo, serial bone marrow analyses were performed on rhesus monkeys treated with 5 micrograms/kg/d of IL-3 and 5 micrograms/kg/d of GM-CSF sequentially for 4 days each, simultaneously for 8 days, and as single agents for 8 days. Platelet counts maximally increased to a mean of 7.5 x 10(5)/microL (n = 3) on days 11 through 12 in monkeys treated with sequential IL-3/GM-CSF. In contrast, neither IL-3 alone nor simultaneously administered IL-3/GM-CSF elicited increases in thrombopoiesis between days 3 and 15. GM-CSF elicited a variable platelet response. Megakaryocyte ploidy distributions were significantly (P < .001) shifted between days 7 and 10 in monkeys treated sequentially and between days 3 and 15 in monkeys treated with combined IL-3/GM-CSF and with GM-CSF alone but not in monkeys treated with IL-3 alone. The changes in mean DNA content and megakaryocyte size, as determined by digital image analysis, were larger in monkeys treated with sequential IL-3/GM-CSF and with GM-CSF alone than in simultaneously treated monkeys. In addition, sequentially but not simultaneously treated monkeys showed increased numbers of megakaryocytes on bone marrow biopsy. We conclude that administration of IL-3 followed by GM-CSF treatment increases thrombopoiesis by sequentially increasing megakaryocyte numbers and maturation and that these effects are diminished by simultaneous administration of the two cytokines.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

Abstract The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


Blood ◽  
2002 ◽  
Vol 99 (7) ◽  
pp. 2603-2605 ◽  
Author(s):  
Armin G. Jegalian ◽  
Adriana Acurio ◽  
Glenn Dranoff ◽  
Hong Wu

Erythropoietin (EPO) and its receptor (EPOR) are critical for definitive erythropoiesis, as mice lacking either gene product die during embryogenesis with severe anemia. Here we demonstrate that mice expressing just one functional allele of the EpoR have lower hematocrits and die more frequently than do wild-type littermates on anemia induction. Furthermore, EpoR+/−erythroid colony-forming unit (CFU-E) progenitors are reduced both in frequency and in responsiveness to EPO stimulation. To evaluate the interaction between EPO and granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin 3 (IL-3),GM-CSF−/− orIL-3−/− mice were interbred withEpoR+/− mice. Deletion of either GM-CSF or IL-3 also leads to reduction in CFU-E numbers and hematocrits but does not significantly alter steady-state erythroid burst-forming unit numbers. These results suggest EpoR haploinsufficiency and promotion of in vivo erythropoiesis by GM-CSF and IL-3.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 523-532 ◽  
Author(s):  
WP Hammond ◽  
TC Boone ◽  
RE Donahue ◽  
LM Souza ◽  
DC Dale

Cyclic hematopoiesis in gray collie dogs is a stem cell disease in which abnormal regulation of cell production in the bone marrow causes cyclic fluctuations of blood cell counts. In vitro studies demonstrated that recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and granulocyte colony stimulating factor (G-CSF) all stimulated increases in colony formation by canine bone marrow progenitor cells. Based on these results, gray collie dogs were then treated with recombinant human (rh) GM-CSF, IL-3, or G-CSF subcutaneously to test the hypothesis that pharmacologic doses of one of these hematopoietic growth factors could alter cyclic production of cells. When recombinant canine G-CSF became available, it was tested over a range of doses. In vivo rhIL-3 had no effect on the recurrent neutropenia but was associated with eosinophilia, rhGM-CSF caused neutrophilia and eosinophilia but cycling of hematopoiesis persisted. However, rhG-CSF caused neutrophilia, prevented the recurrent neutropenia and, in the two animals not developing antibodies to rhG- CSF, obliterated periodic fluctuation of monocyte, eosinophil, reticulocyte, and platelet counts. Recombinant canine G-CSF increased the nadir neutrophil counts and amplitude of fluctuations at low doses (1 micrograms/kg/d) and eliminated all cycling of cell counts at high doses (5 and 10 micrograms/kg/d). These data suggest significant differences in the actions of these growth factors and imply a critical role for G-CSF in the homeostatic regulation of hematopoiesis.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3474-3479 ◽  
Author(s):  
BS Charak ◽  
R Agah ◽  
A Mazumder

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been reported to induce antitumor activity in peripheral blood monocytes. We examined the role of GM-CSF on bone marrow (BM) macrophages in inducing antibody-dependent cellular cytotoxicity (ADCC) against murine and human tumor cells in vitro and in vivo with the aim of applying this approach in an autologous bone marrow transplantation (BMT) setting. GM- CSF induced a potent ADCC in BM macrophages against a murine melanoma in vitro. Treatment with GM-CSF alone or with antibody alone had no effect, whereas therapy with combination of both these agents resulted in a significant reduction in dissemination of melanoma both in a nontransplant as well as in BMT settings, with results being more optimal in the latter setting. Adoptive transfer of BM macrophages harvested from mice undergoing therapy with GM-CSF plus antibody significantly reduced the dissemination of melanoma in secondary recipients but only after irradiation, not in intact mice. GM-CSF also induced significant ADCC in human BM macrophages against a melanoma and a lymphoma in vitro and against a lymphoma implanted in nude mice in vivo. Again, these effects were more optimal after chemotherapy. These data suggest that treatment with GM-CSF plus tumor-specific monoclonal antibodies after BMT may induce an antitumor effect and help eradicate the minimal residual disease.


Blood ◽  
1992 ◽  
Vol 80 (7) ◽  
pp. 1673-1678 ◽  
Author(s):  
E Naparstek ◽  
Y Hardan ◽  
M Ben-Shahar ◽  
A Nagler ◽  
R Or ◽  
...  

We studied an alternative method of using hematopoietic growth factors (HGFs) to enhance hematopoietic recovery in patients undergoing bone marrow transplantation (BMT), by short in vitro preincubation. Twenty consecutive patients with leukemia received T-cell-depleted allografts using Campath-1G. Two thirds of the marrow was infused on the scheduled day of transplant and one third of the marrow following preincubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) on day 4. Engraftment parameters and duration of hospitalization were compared by actuarial analysis to those of 40 historical controls. Patients receiving the incubated boost had significantly faster platelet recovery (P = .017) and shorter hospitalization period (P = .001) when compared with the control subjects. Platelet count reached greater than 25 x 10(9)/L on day 17 (median) in the study group and on day 23 in the controls. The median duration of hospitalization was 20 and 36 days, respectively. In the early posttransplantation follow-up, two of four patients in the study group died as a result of graft rejection, while all 13 deaths in the control group resulted from complications associated with marrow suppression. We suggest that pretransplant in vitro activation of bone marrow cells with IL-3 and GM-CSF may prove to be an efficient method for enhancing marrow recovery after BMT.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1691-1698 ◽  
Author(s):  
EC Guinan ◽  
YS Lee ◽  
KD Lopez ◽  
S Kohler ◽  
DH Oette ◽  
...  

Amegakaryocytic thrombocytopenia (AMT) is a rare and often fatal disorder of infancy and childhood presenting with isolated thrombocytopenia that progresses to marrow failure. The defect in thrombopoiesis is not well understood nor is the etiology of the progressive marrow failure. No standard modality of treatment exists. Here, we evaluated the capacity of marrow cells isolated from five patients with AMT and progressive marrow failure to generate megakaryocyte progenitor cells (CFU-MK). These in vitro studies demonstrated assayable numbers of CFU-MK from all patient bone marrows that responded in vitro to the addition of interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or the combination of both. These findings suggest that the defect in AMT might be partially correctable by the administration of these cytokines. A Phase I/II trial of in vivo administration of these same hematopoietins in the identical patients was conducted in which no significant toxicity was observed. IL-3 but not GM-CSF administration resulted in improved platelet counts in two patients and decreased bleeding and transfusion requirement in the remaining three. No clinical benefit was observed when GM-CSF was administered after IL-3 pretreatment. Prolonged IL-3 administration has resulted in platelet increases in an additional two patients. In vitro responsiveness of CFU- MK to either cytokine did not predict the degree of clinical response. Although the optimal dose and schedule of IL-3 either alone or in combination remains to be established, this study suggests that IL-3 may contribute to the treatment of patients with AMT.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1691-1698 ◽  
Author(s):  
EC Guinan ◽  
YS Lee ◽  
KD Lopez ◽  
S Kohler ◽  
DH Oette ◽  
...  

Abstract Amegakaryocytic thrombocytopenia (AMT) is a rare and often fatal disorder of infancy and childhood presenting with isolated thrombocytopenia that progresses to marrow failure. The defect in thrombopoiesis is not well understood nor is the etiology of the progressive marrow failure. No standard modality of treatment exists. Here, we evaluated the capacity of marrow cells isolated from five patients with AMT and progressive marrow failure to generate megakaryocyte progenitor cells (CFU-MK). These in vitro studies demonstrated assayable numbers of CFU-MK from all patient bone marrows that responded in vitro to the addition of interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or the combination of both. These findings suggest that the defect in AMT might be partially correctable by the administration of these cytokines. A Phase I/II trial of in vivo administration of these same hematopoietins in the identical patients was conducted in which no significant toxicity was observed. IL-3 but not GM-CSF administration resulted in improved platelet counts in two patients and decreased bleeding and transfusion requirement in the remaining three. No clinical benefit was observed when GM-CSF was administered after IL-3 pretreatment. Prolonged IL-3 administration has resulted in platelet increases in an additional two patients. In vitro responsiveness of CFU- MK to either cytokine did not predict the degree of clinical response. Although the optimal dose and schedule of IL-3 either alone or in combination remains to be established, this study suggests that IL-3 may contribute to the treatment of patients with AMT.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3474-3479 ◽  
Author(s):  
BS Charak ◽  
R Agah ◽  
A Mazumder

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been reported to induce antitumor activity in peripheral blood monocytes. We examined the role of GM-CSF on bone marrow (BM) macrophages in inducing antibody-dependent cellular cytotoxicity (ADCC) against murine and human tumor cells in vitro and in vivo with the aim of applying this approach in an autologous bone marrow transplantation (BMT) setting. GM- CSF induced a potent ADCC in BM macrophages against a murine melanoma in vitro. Treatment with GM-CSF alone or with antibody alone had no effect, whereas therapy with combination of both these agents resulted in a significant reduction in dissemination of melanoma both in a nontransplant as well as in BMT settings, with results being more optimal in the latter setting. Adoptive transfer of BM macrophages harvested from mice undergoing therapy with GM-CSF plus antibody significantly reduced the dissemination of melanoma in secondary recipients but only after irradiation, not in intact mice. GM-CSF also induced significant ADCC in human BM macrophages against a melanoma and a lymphoma in vitro and against a lymphoma implanted in nude mice in vivo. Again, these effects were more optimal after chemotherapy. These data suggest that treatment with GM-CSF plus tumor-specific monoclonal antibodies after BMT may induce an antitumor effect and help eradicate the minimal residual disease.


Sign in / Sign up

Export Citation Format

Share Document