Specific Signals Generated by the Cytoplasmic Domain of the Granulocyte Colony-Stimulating Factor (G-CSF) Receptor Are Not Required for G-CSF–Dependent Granulocytic Differentiation

Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Jason Jacob ◽  
Jeffery S. Haug ◽  
Sofia Raptis ◽  
Daniel C. Link

Abstract Granulocyte colony-stimulating factor (G-CSF) is the principal growth factor regulating the production of neutrophils, yet its role in lineage commitment and terminal differentiation of hematopoietic progenitor cells is controversial. In this study, we describe a system to study the role of G-CSF receptor (G-CSFR) signals in granulocytic differentiation using retroviral transduction of G-CSFR–deficient, primary hematopoietic progenitor cells. We show that ectopic expression of wild-type G-CSFR in hematopoietic progenitor cells supports G-CSF–dependent differentiation of these cells into mature granulocytes, macrophages, megakaryocytes, and erythroid cells. Furthermore, we show that two mutant G-CSFR proteins, a truncation mutant that deletes the carboxy-terminal 96 amino acids and a chimeric receptor containing the extracellular and transmembrane domains of the G-CSFR fused to the cytoplasmic domain of the erythropoietin receptor, are able to support the production of morphologically mature, chloroacetate esterase-positive, Gr-1/Mac-1–positive neutrophils in response to G-CSF. These results demonstrate that ectopic expression of the G-CSFR in hematopoietic progenitor cells allows for multilineage differentiation and suggest that unique signals generated by the cytoplasmic domain of the G-CSFR are not required for G-CSF–dependent granulocytic differentiation.

Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Jason Jacob ◽  
Jeffery S. Haug ◽  
Sofia Raptis ◽  
Daniel C. Link

Granulocyte colony-stimulating factor (G-CSF) is the principal growth factor regulating the production of neutrophils, yet its role in lineage commitment and terminal differentiation of hematopoietic progenitor cells is controversial. In this study, we describe a system to study the role of G-CSF receptor (G-CSFR) signals in granulocytic differentiation using retroviral transduction of G-CSFR–deficient, primary hematopoietic progenitor cells. We show that ectopic expression of wild-type G-CSFR in hematopoietic progenitor cells supports G-CSF–dependent differentiation of these cells into mature granulocytes, macrophages, megakaryocytes, and erythroid cells. Furthermore, we show that two mutant G-CSFR proteins, a truncation mutant that deletes the carboxy-terminal 96 amino acids and a chimeric receptor containing the extracellular and transmembrane domains of the G-CSFR fused to the cytoplasmic domain of the erythropoietin receptor, are able to support the production of morphologically mature, chloroacetate esterase-positive, Gr-1/Mac-1–positive neutrophils in response to G-CSF. These results demonstrate that ectopic expression of the G-CSFR in hematopoietic progenitor cells allows for multilineage differentiation and suggest that unique signals generated by the cytoplasmic domain of the G-CSFR are not required for G-CSF–dependent granulocytic differentiation.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1840-1849 ◽  
Author(s):  
Kandasamy Krishnaraju ◽  
Barbara Hoffman ◽  
Dan A. Liebermann

Abstract Homeobox proteins comprise a major class of transcription factors, which have been implicated in normal hematopoiesis and leukemogenesis. Notable in this context is the homeobox gene HOX-B8 (formerly known as HOX-2.4), which was shown to cooperate with hematokines to induce leukemia, and to enhance self-renewal of immature myeloid progenitors when expressed alone. How HOX-B8 may affect lineage specific development of hematopoietic progenitor cells is unknown. Here it is shown that ectopic expression of HOX-B8 specifically inhibited dimethyl sulfoxide (DMSO)-induced granulocytic differentiation of autonomously proliferating HL-60 myeloid progenitor cells. HOX-B8 also inhibited the granulocyte colony-stimulating factor (G-CSF )–induced granulocytic developmental program of factor dependent 32Dcl3 hematopoietic progenitors, including survival, proliferation, and differentiation, as evident by rapid apoptosis of the cells following removal of interleukin-3 (IL-3) and addition of G-CSF. In sharp contrast, HOX-B8 had no effect on macrophage differentiation of M1 and HL-60 cells induced by IL-6 and phorbol-12-myristate-13-acetate, respectively. Moreover, HOX-B8 expression endowed the 32Dcl3 cells with the ability to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF ) for terminal differentiation exclusively along the macrophage lineage; this effect was at least partially mediated via expression of the zinc finger transcription factor Egr-1. Thus, ectopic expression of HOX-B8 in hematopoietic progenitor cells appears to differentially affect lineage specific development, negatively regulating granulocyte development and positively regulating macrophage development.


Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1274-1282 ◽  
Author(s):  
David L. Stachura ◽  
Ondrej Svoboda ◽  
Ryan P. Lau ◽  
Keir M. Balla ◽  
Leonard I. Zon ◽  
...  

Abstract Identification of hematopoietic progenitor cells in the zebrafish (Danio rerio) has been hindered by a lack of functional assays to gauge proliferative potential and differentiation capacity. To investigate the nature of myeloerythroid progenitor cells, we developed clonal methylcellulose assays by using recombinant zebrafish erythropoietin and granulocyte colony-stimulating factor. From adult whole kidney marrow, erythropoietin was required to support erythroid colony formation, and granulocyte colony-stimulating factor was required to support the formation of colonies containing neutrophils, monocytes, and macrophages. Myeloid and erythroid colonies showed distinct morphologies and were easily visualized and scored by their expression of lineage-specific fluorescent transgenes. Analysis of the gene-expression profiles after isolation of colonies marked by gata1:DsRed or mpx:eGFP transgenes confirmed our morphological erythroid and myeloid lineage designations, respectively. The majority of progenitor activity was contained within the precursor light scatter fraction, and more immature precursors were present within the lymphoid fraction. Finally, we performed kinetic analyses of progenitor activity after sublethal irradiation and demonstrated that recovery to preirradiation levels occurred by 14 days after irradiation. Together, these experiments provide the first report of clonal hematopoietic progenitor assays in the zebrafish and establish the number, characteristics, and kinetics of myeloerythroid progenitors during both steady-state and stress hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document