scholarly journals ProbeAlign: incorporating high-throughput sequencing-based structure probing information into ncRNA homology search

2014 ◽  
Vol 15 (Suppl 9) ◽  
pp. S15 ◽  
Author(s):  
Ping Ge ◽  
Cuncong Zhong ◽  
Shaojie Zhang
2010 ◽  
Vol 7 (12) ◽  
pp. 995-1001 ◽  
Author(s):  
Jason G Underwood ◽  
Andrew V Uzilov ◽  
Sol Katzman ◽  
Courtney S Onodera ◽  
Jacob E Mainzer ◽  
...  

2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Nathan D. Berkowitz ◽  
Ian M. Silverman ◽  
Daniel M. Childress ◽  
Hilal Kazan ◽  
Li-San Wang ◽  
...  

2020 ◽  
Author(s):  
Paolo Marangio ◽  
Ka Ying Toby Law ◽  
Guido Sanguinetti ◽  
Sander Granneman

Combining RNA structure probing with high-throughput sequencing technologies has greatly enhanced our ability to analyze RNA structure at transcriptome scale. However, the high level of noise and variability encountered in these data call for the development of computational tools that robustly extract RNA structural information. Here we present diffBUM-HMM, a noise-aware model that enables accurate detection of RNA flexibility and conformational changes from high-throughput RNA structure-probing data. DiffBUM-HMM is compatible with a wide variety of high-throughput RNA structure probing data, taking into consideration biological variation, sequence coverage and sequence representation biases. We demonstrate that, compared to the existing approaches, diffBUM-HMM displays higher sensitivity while calling virtually no false positives. DiffBUM-HMM analysis of ex vivo and in vivo Xist SHAPE-MaP data detected many more RNA structural differences, involving mostly single-stranded nucleotides located at or near protein-binding sites. Collectively, our analyses demonstrate the value of diffBUM-HMM for quantitatively detecting RNA structural changes and reinforce the notion that RNA structure probing is a very powerful tool for identifying protein-binding sites.


Sign in / Sign up

Export Citation Format

Share Document