scholarly journals Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Bas Kluitenberg ◽  
Steef W Bredeweg ◽  
Sjouke Zijlstra ◽  
Wiebren Zijlstra ◽  
Ida Buist
2018 ◽  
Vol 124 (3) ◽  
pp. 641-645 ◽  
Author(s):  
Owen N. Beck ◽  
Alena M. Grabowski

People have debated whether athletes with transtibial amputations should compete with nonamputees in track events despite insufficient information regarding how the use of running-specific prostheses (RSPs) affect athletic performance. Thus, we sought to quantify the spatiotemporal variables, ground reaction forces, and spring-mass mechanics of the fastest athlete with a unilateral transtibial amputation using an RSP to reveal how he adapts his biomechanics to achieve elite running speeds. Accordingly, we measured ground reaction forces during treadmill running trials spanning 2.87 to 11.55 m/s of the current male International Paralympic Committee T44 100- and 200-m world record holder. To achieve faster running speeds, the present study’s athlete increased his affected leg (AL) step lengths ( P < 0.001) through longer contact lengths ( P < 0.001) and his unaffected leg (UL) step lengths ( P < 0.001) through longer contact lengths ( P < 0.001) and greater stance average vertical ground reaction forces ( P < 0.001). At faster running speeds, step time decreased for both legs ( P < 0.001) through shorter ground contact and aerial times ( P < 0.001). Unlike athletes with unilateral transtibial amputations, this athlete maintained constant AL and UL stiffness across running speeds ( P ≥ 0.569). Across speeds, AL step lengths were 8% longer ( P < 0.001) despite 16% lower AL stance average vertical ground reaction forces compared with the UL ( P < 0.001). The present study’s athlete exhibited biomechanics that differed from those of athletes with bilateral and without transtibial amputations. Overall, we present the biomechanics of the fastest athlete with a unilateral transtibial amputation, providing insight into the functional abilities of athletes with transtibial amputations using running-specific prostheses.NEW & NOTEWORTHY The present study’s athlete achieved the fastest treadmill running trial ever attained by an individual with a leg amputation (11.55 m/s). From 2.87 to 11.55 m/s, the present study’s athlete maintained constant affected and unaffected leg stiffness, which is atypical for athletes with unilateral transtibial amputations. Furthermore, the asymmetric vertical ground reaction forces of athletes with unilateral transtibial amputations during running may be the result of leg length discrepancies.


1995 ◽  
Vol 3 (2) ◽  
pp. 86
Author(s):  
H.John Yack ◽  
Carole Tucker ◽  
Scott C White Heather Collins

2010 ◽  
Vol 71 (12) ◽  
pp. 1413-1416 ◽  
Author(s):  
David Levine ◽  
Denis J. Marcellin-Little ◽  
Darryl L. Millis ◽  
Verena Tragauer ◽  
Jason A. Osborne

2008 ◽  
Vol 21 (03) ◽  
pp. 243-249 ◽  
Author(s):  
D. Damur ◽  
T. Guerrero ◽  
M. Haessig ◽  
P. Montavon ◽  
K. Voss

Summary Objective: To assess functional outcome in dogs with cranial cruciate ligament (CrCL) disease after tibial tuberosity advancement (TTA) using force plate gait analysis, and to evaluate parameters potentially influencing outcome. Study design: Prospective clinical study. Animals: Consecutive clinical patients (n=37) with CrCL-deficient stifles (n=40). Methods: The stifle joints were examined arthroscopically prior to TTA. Meniscal release was not performed if the medial meniscus was intact. Open medial arthrotomy and partial meniscectomy were performed in the presence of meniscal tears. Vertical ground reaction forces were measured preoperatively and at follow-up examinations four to 16 months postoperatively (mean: 5.9 months). The ground reaction forces of a group of 65 healthy dogs were used for the comparison. The potential effects of clinical parameters on functional outcome were evaluated statistically. Results: Complete CrCL rupture was identified in 28 joints, and partial CrCL rupture in 12 joints. The medial meniscus was damaged in 21 stifles. Vertical ground reaction forces were significantly higher at follow-up (P<0.01), but remained significantly lower than those of control dogs (P<0.01). Complications were identified in 25% of joints, and the dogs with complications had significantly lower peak vertical forces at follow-up than the dogs without complications (P=0.04). Other clinical parameters did not influence outcome. Conclusions: Tibial tuberosity advancement significantly improved limb function in dogs with CrCL disease, but did not result in complete return to function. Complications adversely affected functional outcome. Clinical significance: A return to a function of approximately 90% of normal can be expected in dogs with CrCL disease undergoing TTA.


Sign in / Sign up

Export Citation Format

Share Document