scholarly journals Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto

2012 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul E Parham ◽  
Diane Pople ◽  
Céline Christiansen-Jucht ◽  
Steve Lindsay ◽  
Wes Hinsley ◽  
...  
2019 ◽  
Author(s):  
Oscar Mbare ◽  
Steven W. Lindsay ◽  
Ulrike Fillinger

Abstract Background Larval source management is an effective supplementary tool for malaria vector control although it is not used widely in sub-Saharan Africa. This study explored whether an attract-and-kill strategy could contaminate gravid Anopheles gambiae sensu stricto with the insect growth regulator, pyriproxyfen, at a bait-station, for dissemination to larval habitats. Methods A bait-station comprising an artificial pond, containing water was treated with 20 ppm cedrol, an oviposition attractant, was covered with pyriproxfen-treated netting. Three identical semi-field cages were used to assess the potential of gravid Anopheles gambiae sensu stricto to transfer pyriproxyfen from the bait-station to three open ponds. Gravid females were released in the test and one of the control cages that had no pyriproxyfen on its bait-station. No mosquitoes were released in the third cage with a pyriproxyfen-treated station. Transfer of pyriproxyfen to open ponds was assessed by monitoring emergence of late instar insectary-reared An. gambiae sensu stricto larvae introduced into the open ponds. Liquid chromatography-mass spectrometry was used to quantify the amount of pyriproxyfen carried by a mosquito and the amount transferred to water. Results 86% (95% CI 81-89%) of larvae introduced into the open ponds in the two control cages developed into adults. Transfer of pyriproxyfen to the test cage depended on the distance of the pond from the bait-station. While only 25% (95% CI 22-29%) adult emergence was observed in larvae introduced into ponds 4.4 m from the bait-station, the emergence rates increased to 92% (95% CI 89-94%) in larvae introduced in ponds 10.3 m away. Each mosquito was contaminated with 112 µg (95% CI 93-123 µg) pyriproxyfen, whilst 230 ng/L (95% CI 180-290 ng/L) was transferred by a single female to 100 ml of water. Conclusions Pyriproxyfen was auto-disseminated by gravid females from attractive bait-stations, but mainly to aquatic habitats near the bait station. To make this approach feasible for malaria vector control, stronger attractants and better pyriproxyfen delivery systems are needed.


2019 ◽  
Author(s):  
Oscar Mbare ◽  
Steven W. Lindsay ◽  
Ulrike Fillinger

Abstract Background Larval source management is an effective supplementary tool for malaria vector control although it is not used widely in sub-Saharan Africa. This study explored whether an attract-and-kill strategy could contaminate gravid Anopheles gambiae sensu stricto with the insect growth regulator, pyriproxyfen, at a bait-station, for dissemination to larval habitats. Methods A bait-station comprising an artificial pond, containing water was treated with 20 ppm cedrol, an oviposition attractant, was covered with pyriproxfen-treated netting. Three identical semi-field cages were used to assess the potential of gravid Anopheles gambiae sensu stricto to transfer pyriproxyfen from the bait-station to three open ponds. Gravid females were released in the test and one of the control cages that had no pyriproxyfen on its bait-station. No mosquitoes were released in the third cage with a pyriproxyfen-treated station. Transfer of pyriproxyfen to open ponds was assessed by monitoring emergence of late instar insectary-reared An. gambiae sensu stricto larvae introduced into the open ponds. Liquid chromatography-mass spectrometry was used to quantify the amount of pyriproxyfen carried by a mosquito and the amount transferred to water. Results 86% (95% CI 81-89%) of larvae introduced into the open ponds in the two control cages developed into adults. Transfer of pyriproxyfen to the test cage depended on the distance of the pond from the bait-station. While only 25% (95% CI 22-29%) adult emergence was observed in larvae introduced into ponds 4.4 m from the bait-station, the emergence rates increased to 92% (95% CI 89-94%) in larvae introduced in ponds 10.3 m away. Each mosquito was contaminated with 112 µg (95% CI 93-123 µg) pyriproxyfen, whilst 230 ng/L (95% CI 180-290 ng/L) was transferred by a single female to 100 ml of water. Conclusions Pyriproxyfen was auto-disseminated by gravid females from attractive bait-stations, but mainly to aquatic habitats near the bait station. To make this approach feasible for malaria vector control, stronger attractants and better pyriproxyfen delivery systems are needed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Eliningaya J. Kweka ◽  
Filemoni Tenu ◽  
Frank Magogo ◽  
Leonard E. G. Mboera

Effective malaria vector control initiatives need a clear understanding of mosquito behaviour and its ecology. This study compared larvae development to adult emergence in insectary and malaria-sphere (SFS). This is the preliminary study which gives an insight to forthcoming studies. Anopheles gambiae sensu stricto eggs were hatched in insectary and transferred in densities of 20 and 50 per microhabitat with twenty replicates of each density. Both densities of larvae were reared in semifield structure and in insectary from the same batch of eggs. They were provided with tetramin fish food. In both densities of 20 and 50, pupation rate and time were found to be similar in SFS and insectary, but, in survivorship from larvae to pupae at density of 50, more larvae survived significantly to pupae stage in SFS than in insectary (P=0.002). The adult emergence rates were similar for densities of 20 and 50 between SFS and Insectary. There was a significant difference between SFS and insectary in light intensity (P=0.001) and temperatures (P=0.001), with SFS having higher rates than insectary. The findings of this study have shown that larvae development rates are encouraging having semifield structures for malaria vector rearing for behavioural studies toward malaria control.


2019 ◽  
Author(s):  
Oscar Mbare ◽  
Steven W. Lindsay ◽  
Ulrike Fillinger

Abstract Background Larval source management is an effective supplementary tool for malaria vector control although it is not used widely in sub-Saharan Africa. This study explored whether an attract-and-kill strategy could contaminate gravid Anopheles gambiae sensu stricto with the insect growth regulator, pyriproxyfen, at a bait-station, for dissemination to larval habitats. Methods A bait-station comprising an artificial pond, containing water was treated with 20 ppm cedrol, an oviposition attractant, was covered with pyriproxfen-treated netting. Three identical semi-field cages were used to assess the potential of gravid Anopheles gambiae sensu stricto to transfer pyriproxyfen from the bait-station to three open ponds. Gravid females were released in the test and one of the control cages that had no pyriproxyfen on its bait-station. No mosquitoes were released in the third cage with a pyriproxyfen-treated station. Transfer of pyriproxyfen to open ponds was assessed by monitoring emergence of late instar insectary-reared An. gambiae sensu stricto larvae introduced into the open ponds. Liquid chromatography-mass spectrometry was used to quantify the amount of pyriproxyfen carried by a mosquito and the amount transferred to water. Results 86% (95% CI 81-89%) of larvae introduced into the open ponds in the two control cages developed into adults. Transfer of pyriproxyfen to the test cage depended on the distance of the pond from the bait-station. While only 25% (95% CI 22-29%) adult emergence was observed in larvae introduced into ponds 4.4 m from the bait-station, the emergence rates increased to 92% (95% CI 89-94%) in larvae introduced in ponds 10.3 m away. Each mosquito was contaminated with 112 µg (95% CI 93-123 µg) pyriproxyfen, whilst 230 ng/L (95% CI 180-290 ng/L) was transferred by a single female to 100 ml of water. Conclusions Pyriproxyfen was auto-disseminated by gravid females from attractive bait-stations, but mainly to aquatic habitats near the bait station. To make this approach feasible for malaria vector control, stronger attractants and better pyriproxyfen delivery systems are needed.


2009 ◽  
Vol 8 (1) ◽  
Author(s):  
Yoosook Lee ◽  
Anthony J Cornel ◽  
Claudio R Meneses ◽  
Abdrahamane Fofana ◽  
Aurélie G Andrianarivo ◽  
...  

2013 ◽  
Vol 12 (1) ◽  
pp. 365 ◽  
Author(s):  
Michael N Okal ◽  
Benjamin Francis ◽  
Manuela Herrera-Varela ◽  
Ulrike Fillinger ◽  
Steven W Lindsay

Sign in / Sign up

Export Citation Format

Share Document