paracentric inversions
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1709
Author(s):  
Marcello Mezzasalma ◽  
Gaetano Odierna ◽  
Agnese Petraccioli ◽  
Michael Veith ◽  
Fabio Maria Guarino

We performed the first cytogenetic analysis on five out of the seven species of the genus Lyciasalamandra, including seven subspecies, and representatives of its sister genus Salamandra. All the studied species have a similar karyotype of 2n = 24, mostly composed of biarmed elements. C-bands were observed on all chromosomes, at centromeric, telomeric and interstitial position. We found a peculiar taxon-specific NOR configuration, including either heteromorphic and homomorphic NORs on distinct regions of different chromosomes. Lyciasalamandra a.antalyana and L. helverseni showed two homomorphic NORs (pairs 8 and 2, respectively), while heteromorphic NORs were found in L. billae (pairs 6, 12), L. flavimembris (pairs 2, 12), L. l. luschani (pairs 2, 12), L. l. basoglui (pairs 6, 12), L. l. finikensis (pairs 2, 6) and S. lanzai (pairs 8, 10). Homomorphic NORs with an additional supernumerary site were shown by S. s. salamandra (pairs 2, 8) and S. s. gigliolii (pairs 2, 10). This unexpected highly variable NOR configuration is probably derived from multiple independent NOR translocations and paracentric inversions and correlated to lineage divergence in Lyciasalamandra. These results support the taxonomic validity of the studied taxa and are consistent with a hypothesized scenario of synchronous evolution in the genus.


2019 ◽  
Author(s):  
Nicholas B. Stewart ◽  
Yasir H. Ahmed-Braimah ◽  
Daniel G. Cerne ◽  
Bryant F. McAllister

AbstractA vast diversity of karyotypes exists within and between species, yet the mechanisms that shape this diversity are poorly understood. Here we investigate the role of biased meiotic segregation—i.e., meiotic drive—in karyotype evolution. The closely related species, Drosophila americana and D. novamexicana, provide an ideal system to investigate mechanisms of karyotypic diversification. Since their recent divergence, D. americana has evolved two centromeric fusions: one between the 2nd and 3rd chromosomes, and another between the X and 4th chromosomes. The 2-3 fusion is fixed in D. americana, but the X-4 fusion is polymorphic and varies in frequency along a latitudinal cline. Here we evaluate the hypothesis that these derived metacentric chromosomes segregate preferentially to the egg nucleus during female meiosis in D. americana. Using two different methods, we show that the fused X-4 chromosome is transmitted at an average frequency of ~57%, exceeding expectations of 50:50 Mendelian segregation. Three paracentric inversions are found in the vicinity of the X-4 fusion and could potentially influence chromosome segregation. Using crosses between lines with differing inversion arrangements, we show that the transmission bias persists regardless of inversion status. Transmission rates are also biased in D. americana/D. novamexicana hybrid females, favoring both the X-4 and 2-3 fused arrangements over their unfused homologs. Our results show that meiotic drive influences chromosome segregation in D. americana favoring derived arrangements in its reorganized karyotype. Moreover, the fused centromeres are the facilitators of biased segregation rather than associated chromosomal inversions.


2019 ◽  
Vol 157 (4) ◽  
pp. 239-248 ◽  
Author(s):  
Amanda T. Borges ◽  
Marcelo B. Cioffi ◽  
Luiz A.C. Bertollo ◽  
Rodrigo X. Soares ◽  
Gideão W.W.F. Costa ◽  
...  

Centropomus is the sole genus of the Centropomidae family (Teleostei), comprising 12 species widely distributed throughout the Western Atlantic and Eastern Pacific, with 6 of them occurring in the Western Atlantic in extensive sympatry. Their life history and phylogenetic relationships are well characterized; however, aspects of chromosomal evolution are still unknown. Here, cytogenetic analyses of 2 Centropomus species of great economic value (C. undecimalis and C. mexicanus) were performed using conventional (Giemsa, Ag-NOR, and fluorochrome staining, C- and replication banding) and molecular (chromosomal mapping of 18S and 5S rDNA, H2A-H2B and H3 hisDNA, and (TTAGGG)n repeats) approaches. The karyotypes of both species were composed of 48 solely acrocentric chromosomes (2n = 48; FN = 48), but the single ribosomal site was located in varying positions in the long arms of the second largest chromosome pair. Replication bands were generally similar, although conspicuous differences were observed in some chromosome regions. In both species, the histone H3 genes were located on 3 apparently homeologous chromosome pairs, but the exact position of these clusters differed slightly. Interspecific hisDNA and rDNA site displacements can indicate the occurrence of multiple paracentric inversions during the evolutionary diversification of the Centropomus genomes. Although the karyotypes remained similar in both species, our data demonstrate an unsuspected microstructural reorganization between them, driven most likely by a series of paracentric inversions.


2017 ◽  
Vol 151 (4) ◽  
pp. 208-215 ◽  
Author(s):  
Tiago M. Degrandi ◽  
Analía del Valle Garnero ◽  
Patricia C.M. O'Brien ◽  
Malcolm A. Ferguson-Smith ◽  
Rafael Kretschmer ◽  
...  

Trogons are forest birds with a wide distribution, being found in Africa, Asia, and America, and are included in the order Trogoniformes, family Trogonidae. Phylogenetic studies using molecular data have not been able to determine the phylogenetic relationship among the different genera of trogons. So far, no cytogenetic data for these birds exist. Hence, the aim of this study was to characterize the karyotype of Trogon surrucura surrucura by means of classical and molecular cytogenetics. We found a diploid chromosome number of 2n = 82, similar to most birds, with several derived features compared to chicken and the putative ancestral avian karyotype. T. s. surrucura showed 3 pairs of microchromosomes bearing 18S rDNA clusters. The Z and W sex chromosomes were of similar size but could readily be identified by morphological differences. Using chromosome painting with whole chromosome probes from Gallus gallus and Leucopternis albicollis, we found that the chromosomes homologous to chicken chromosomes 2 and 5 correspond to 2 different pairs in T. s. surrucura and L. albicollis, due to the occurrence of centric fissions. Paracentric inversions were detected in the segment homologous to chicken chromosome 1q, and we confirmed the recurrence of breakpoints when our results were compared to other species of birds already analyzed by FISH or by in silico genome assembly.


2013 ◽  
Vol 10 (2) ◽  
pp. 104-108
Author(s):  
Shin Yeong Lee ◽  
Bom Yi Lee ◽  
Ju Yeon Park ◽  
Eun Young Choi ◽  
Yeon Woo Lee ◽  
...  

2010 ◽  
Vol 94 (4) ◽  
pp. S125
Author(s):  
E. Mateu ◽  
L. Rodrigo ◽  
M.C. Martinez ◽  
J. Remohi ◽  
A. Pellicer ◽  
...  

2009 ◽  
Vol 125 (2) ◽  
pp. 117-124 ◽  
Author(s):  
K. Massip ◽  
N. Bonnet ◽  
A. Calgaro ◽  
S. Billoux ◽  
V. Baquié ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document