attract and kill
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Katharina M. Hermann ◽  
Alexander Grünberger ◽  
Anant V. Patel

AbstractThe control of root-feeding wireworms has become more challenging as synthetic soil insecticides have been progressively phased out due to environmental risk concerns. Innovative microbial control alternatives such as the so-called attract-and-kill strategy depend on the rapid and successful development of dried encapsulated microorganisms, which is initiated by rehydration. Casein is a functional additive that is already used in food or pharmaceutical industry due to its water binding capacity. Cross-linked forms such as formalin-casein (FC), exhibit altered network structures. To determine whether FC influences the rehydration of alginate beads in order to increase the efficacy of an attract-and-kill formulation for wireworm pest control, we incorporated either casein or FC in different alginate/starch formulations. We investigated the porous properties of alginate/starch beads and subsequently evaluated the activities of the encapsulated entomopathogenic fungus Metarhizium brunneum and the CO2 producing yeast Saccharomyces cerevisiae. Adding caseins altered the porous structure of beads. FC decreased the bead density from (1.0197 ± 0.0008) g/mL to (1.0144 ± 0.0008) g/mL and the pore diameter by 31%. In contrast to casein, FC enhanced the water absorbency of alginate/starch beads by 40%. Furthermore, incorporating FC quadrupled the spore density on beads containing M. brunneum and S. cerevisiae, and simultaneous venting increased the spore density even by a factor of 18. Moreover, FC increased the total CO2 produced by M. brunneum and S. cerevisiae by 29%. Thus, our findings suggest that rehydration is enhanced by larger capillaries, resulting in an increased water absorption capacity. Our data further suggest that gas exchange is improved by FC. Therefore, our results indicate that FC enhances the fungal activity of both fungi M. brunneum and S. cerevisiae, presumably leading to an enhanced attract-and-kill efficacy for pest control. Graphic abstract


2021 ◽  
Vol 15 (6) ◽  
pp. e0009463
Author(s):  
Roger D. Santer ◽  
Michael N. Okal ◽  
Johan Esterhuizen ◽  
Steve J. Torr

Background Riverine tsetse (Glossina spp.) transmit Trypanosoma brucei gambiense which causes Gambian Human African Trypanosomiasis. Tiny Targets were developed for cost-effective riverine tsetse control, and comprise panels of insecticide-treated blue polyester fabric and black net that attract and kill tsetse. Versus typical blue polyesters, two putatively more attractive fabrics have been developed: Vestergaard ZeroFly blue, and violet. Violet was most attractive to savannah tsetse using large targets, but neither fabric has been tested for riverine tsetse using Tiny Targets. Methods We measured numbers of G. f. fuscipes attracted to electrified Tiny Targets in Kenya and Uganda. We compared violets, Vestergaard blues, and a typical blue polyester, using three replicated Latin squares experiments. We then employed Bayesian statistical analyses to generate expected catches for future target deployments incorporating uncertainty in model parameters, and prior knowledge from previous experiments. Results Expected catches for average future replicates of violet and Vestergaard blue targets were highly likely to exceed those for typical blue. Accounting for catch variability between replicates, it remained moderately probable (70–86% and 59–84%, respectively) that a given replicate of these targets would have a higher expected catch than typical blue on the same day at the same site. Meanwhile, expected catches for average violet replicates were, in general, moderately likely to exceed those for Vestergaard blue. However, the difference in medians was small, and accounting for catch variability, the probability that the expected catch for a violet replicate would exceed a Vestergaard blue equivalent was marginal (46–71%). Conclusion Violet and Vestergaard ZeroFly blue are expected to outperform typical blue polyester in the Tiny Target configuration. Violet is unlikely to greatly outperform Vestergaard blue deployed in this way, but because violet is highly attractive to both riverine and savannah tsetse using different target designs, it may provide the more suitable general-purpose fabric.


Author(s):  
Santosh V. Revadi ◽  
Vito Antonio Giannuzzi ◽  
Ramesh R. Vetukuri ◽  
William B. Walker ◽  
Paul G. Becher

AbstractLarval frass in herbivorous lepidopterans is mainly composed of plant-derived material and microbes from the gut. Despite the fact that frass from conspecific larvae repels female moths in Spodoptera littoralis from oviposition, the role of frass volatiles on larval foraging behavior is largely unknown. Here, we show that larvae of S. littoralis walk upwind to larval frass volatiles in a wind tunnel assay. We identified the frass volatile guaiacol (2-methoxyphenol) as key ligand for the S. littoralis odorant receptor (OR) SlitOr59 which we expressed heterologously. We isolated guaiacol-producing bacteria identified as Serratia marcescens from frass of larvae that were fed on cotton, and Enterobacter cloacae, E. ludwigii and Klebsiella sp. from frass derived from cabbage-fed larvae. In addition to guaiacol, we also identified volatiles acetoin, 3-methyl-1-butanol and dimethyl disulfide, in large proportions in headspace collections from the bacteria. A Y-tube olfactometer assay showed that fourth instar S. littoralis larvae are attracted to guaiacol. Moreover, cotton leaves treated with the insecticide Spinosad and guaiacol were highly attractive to the larvae. Our results provide a basis for management of the pest by directly targeting larvae, based on an attract-and-kill strategy. Further studies are needed to test the application of guaiacol for semiochemical-based pest management of Spodoptera pest species.


Toxics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Fanfang Kong ◽  
Yaqin Song ◽  
Qian Zhang ◽  
Zhongyue Wang ◽  
Yongqiang Liu

The integrated use of plant-derived volatile attractants and synthetic insecticides in attract-and-kill programs is a useful tool for integrated pest management programs reducing pesticide input. Efficient alternative insecticides are critically needed to replace methomyl, which has been banned on cruciferous vegetables in China because it is also highly toxic to nontarget organisms. In the present study, among 15 commonly used insecticides were screened for toxicity against S. litura moths, where chlorantraniliprole, flubendiamide, and emamectin benzoate was found to have the highest levels of toxicity (LC50 of 0.56, 3.85, and 6.03 mg a.i. L−1 respectively). After exposure to the low lethal concentration LC50 of chlorantraniliprole, fecundity of the moths was substantially reduced. Egg-hatching was lower for LC20- and LC50-treated moth pairs than for untreated control pairs. Net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) were significantly reduced in LC50♀ × LC50♂ cohorts. Larval mortality was significantly higher in subsequent generations in pairs of LC50-treated moths. Chlorantraniliprole, which was most toxic and had significant sublethal effects on moths, can be used as an alternative insecticide to methomyl in the attracticide for controlling S. litura moths, and the LC50 indicated a high potential for efficacy in the control S. litura through attract-and-kill schemes.


Author(s):  
Rachel V. Wilkins ◽  
James F. Campbell ◽  
Kun Yan Zhu ◽  
Laura A. Starkus ◽  
Tanja McKay ◽  
...  

At any point along the post-harvest supply chain, commodities are vulnerable to insect infestation. This is due to a variety of factors, but includes landscape-scale movement of stored product insects to and from food facilities and natural refugia. Long-lasting insecticide-incorporated netting (LLIN) is an innovative tactic that may be used to intercept immigrating insects. LLIN can be used to cover gaps in architecture (e.g., vents, windows, eaves, or over pallets of goods) at food facilities. Another novel approach would be to use LLIN as a kill mechanism in attract-and-kill inspired interception traps on the perimeter of facilities. Furthermore, employing these two LLIN-based approaches together would create multiple protective barriers to reduce infestation in commodities. Therefore, the goal of the current study was to (1) examine the ability of interception traps to capture stored product insects at commercial wheat and rice food facilities, (2) assess whether LLIN deployment method affected efficacy in preventing infestation by stored product insects in pilot-scale warehouses, and (3) determine the success of using LLIN alone, interception traps alone, or both together to prevent infestations. Over 2 years, interception traps deployed for 48-h periods on the perimeter of commercial food facilities captured over 3,000 insects, representing 14 stored product insect taxa. Warehouses deploying LLIN exhibited an 89–93% and 98–100% reduction in insects reaching and progeny production in commodities, even after the release of 3,600 insects of three species over 12 weeks. The combined use of LLIN and interception traps did not improve control above LLIN alone, but this may be because insects could fly unencumbered, highlighting the importance of covering gaps with LLIN on food facilities.


2021 ◽  
Vol 152 ◽  
pp. 104472
Author(s):  
Salim Khoja ◽  
Khalifa M. Eltayef ◽  
Ian Baxter ◽  
Arben Myrta ◽  
James C. Bull ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 870
Author(s):  
Justin George ◽  
Stephen L. Lapointe ◽  
Larry T. Markle ◽  
Joseph M. Patt ◽  
Sandra A. Allan ◽  
...  

Phytophagous insects, including Asian citrus psyllids (Diaphorina citri Kuwayama), use multiple sensory modalities (vision, olfaction, and gustation,) to locate and accept host plants. We explored incorporation of several sensory cues into a multi-modal attract-and-kill device (AK device) using a three-dimensional shape to increase visibility, as well as elements of color, attractant, phagostimulant, UV reflectant, and toxicant. Attraction of adult D. citri to the device was mediated by a combination of a highly reflective yellow cylinder, a UV reflectant compound (magnesium oxide), and an odorant blend as a short-range attractant. The device surface was coated with a slow-release wax matrix (SPLAT™) augmented with a phagostimulant consisting of a 3-component blend (formic acid, acetic acid, and para-cymene) and an insecticide (β-cyfluthrin). Psyllids landing on the device attempted to feed from the wax matrix, became intoxicated, died, and fell from the device. The device remained fully active over a period of 12 weeks partly because dead psyllids or nontargets did not adhere to the surface as occurs on adhesive yellow sticky cards, the industry standard. Laboratory and field assays showed that the device attracted and killed significantly more adult D. citri than ordinary yellow sticky cards. This device or a future iteration based on the design elements of this device is expected to contribute to sustainable and environmentally appropriate management of D. citri by exploiting the psyllid’s innate behavioral responses to visual, olfactory, and gustatory stimuli.


Sign in / Sign up

Export Citation Format

Share Document