scholarly journals Hemodynamic study of TCPC using in vivo and in vitro 4D flow MRI and numerical simulation

Author(s):  
Alejandro Roldán-Alzate ◽  
Sylvana García-Rodríguez ◽  
Leonardo Rivera ◽  
Oliver Wieben ◽  
Petros V Anagnostopoulos ◽  
...  
2015 ◽  
Vol 48 (7) ◽  
pp. 1325-1330 ◽  
Author(s):  
Alejandro Roldán-Alzate ◽  
Sylvana García-Rodríguez ◽  
Petros V. Anagnostopoulos ◽  
Shardha Srinivasan ◽  
Oliver Wieben ◽  
...  

2019 ◽  
Vol 16 (158) ◽  
pp. 20190465 ◽  
Author(s):  
Melissa C. Brindise ◽  
Sean Rothenberger ◽  
Benjamin Dickerhoff ◽  
Susanne Schnell ◽  
Michael Markl ◽  
...  

Typical approaches to patient-specific haemodynamic studies of cerebral aneurysms use image-based computational fluid dynamics (CFD) and seek to statistically correlate parameters such as wall shear stress (WSS) and oscillatory shear index (OSI) to risk of growth and rupture. However, such studies have reported contradictory results, emphasizing the need for in-depth multi-modality haemodynamic metric evaluation. In this work, we used in vivo 4D flow MRI data to inform in vitro particle velocimetry and CFD modalities in two patient-specific cerebral aneurysm models (basilar tip and internal carotid artery). Pulsatile volumetric particle velocimetry experiments were conducted, and the particle images were processed using Shake-the-Box, a particle tracking method. Distributions of normalized WSS and relative residence time were shown to be highly yet inconsistently affected by minor flow field and spatial resolution variations across modalities, and specific relationships among these should be explored in future work. Conversely, OSI, a non-dimensional parameter, was shown to be more robust to the varying assumptions, limitations and spatial resolutions of each subject and modality. These results suggest a need for further multi-modality analysis as well as development of non-dimensional haemodynamic parameters and correlation of such metrics to aneurysm risk of growth and rupture.


Author(s):  
Xiaolin Wu ◽  
Stefanie Gürzing ◽  
Christiaan Schinkel ◽  
Merel Toussaint ◽  
Romana Perinajová ◽  
...  

Abstract Introduction Wall shear stress (WSS) is associated with the growth and rupture of an intracranial aneurysm. To reveal their underlying connections, many image-based computational fluid dynamics (CFD) studies have been conducted. However, the methodological validations using both in vivo medical imaging and in vitro optical flow measurements were rarely accompanied in such studies. Methods In the present study, we performed a comparative assessment on the hemodynamics of a patient-specific intracranial saccular aneurysm using in vivo 4D Flow MRI, in silico CFD, in vitro stereoscopic and tomographic particle imaging velocimetry (Stereo-PIV and Tomo-PIV) techniques. PIV experiments and CFD were conducted under steady state corresponding to the peak systole of 4D Flow MRI. Results The results showed that all modalities provided similar flow features and overall surface distribution of WSS. However, a large variation in the absolute WSS values was found. 4D Flow MRI estimated a 2- to 4-fold lower peak WSS (3.99 Pa) and a 1.6- to 2-fold lower mean WSS (0.94 Pa) than Tomo-PIV, Stereo-PIV, and CFD. Bland-Altman plots of WSS showed that the differences between PIV-/CFD-based WSS and 4D Flow MRI-based WSS increase with higher WSS magnitude. Such proportional trend was absent in the Bland-Altman comparison of velocity where the resolutions of PIV and CFD datasets were matched to 4D Flow MRI. We also found that because of superior resolution in the out-of-plane direction, WSS estimation by Tomo-PIV was higher than Stereo-PIV. Conclusions Our results indicated that the differences in spatial resolution could be the main contributor to the discrepancies between each modality. The findings of this study suggest that with current techniques, care should be taken when using absolute WSS values to perform a quantitative risk analysis of aneurysm rupture.


Author(s):  
Hojin Ha ◽  
Hyung Kyu Huh ◽  
Kyung Jin Park ◽  
Petter Dyverfeldt ◽  
Tino Ebbers ◽  
...  

Imaging hemodynamics play an important role in the diagnosis of abnormal blood flow due to vascular and valvular diseases as well as in monitoring the recovery of normal blood flow after surgical or interventional treatment. Recently, characterization of turbulent blood flow using 4D flow magnetic resonance imaging (MRI) has been demonstrated by utilizing the changes in signal magnitude depending on intravoxel spin distribution. The imaging sequence was extended with a six-directional icosahedral (ICOSA6) flow-encoding to characterize all elements of the Reynolds stress tensor (RST) in turbulent blood flow. In the present study, we aimed to demonstrate the feasibility of full RST analysis using ICOSA6 4D flow MRI under physiological conditions. First, the turbulence analysis was performed through in vitro experiments with a physiological pulsatile flow condition. Second, a total of 12 normal subjects and one patient with severe aortic stenosis were analyzed using the same sequence. The in-vitro study showed that total turbulent kinetic energy (TKE) was less affected by the signal-to-noise ratio (SNR), however, maximum principal turbulence shear stress (MPTSS) and total turbulence production (TP) had a noise-induced bias. Smaller degree of the bias was observed for TP compared to MPTSS. In-vivo study showed that the subject-variability on turbulence quantification was relatively low for the consistent scan protocol. The in vivo demonstration of the stenosis patient showed that the turbulence analysis could clearly distinguish the difference in all turbulence parameters as they were at least an order of magnitude larger than those from the normal subjects.


2013 ◽  
Vol 37 (5) ◽  
pp. spcone-spcone
Author(s):  
Alejandro Roldán-Alzate ◽  
Alex Frydrychowicz ◽  
Eric Niespodzany ◽  
Ben R. Landgraf ◽  
Kevin M. Johnson ◽  
...  

2019 ◽  
Vol 220 (1) ◽  
pp. S673-S674
Author(s):  
Nadav Schwartz ◽  
Eileen Hwuang ◽  
Ana Rodriguez-Soto ◽  
Felix Wehrli ◽  
Marta Vidorreta ◽  
...  

2018 ◽  
Vol 47 (2) ◽  
pp. 413-424 ◽  
Author(s):  
Jonas Lantz ◽  
Vikas Gupta ◽  
Lilian Henriksson ◽  
Matts Karlsson ◽  
Anders Persson ◽  
...  

Author(s):  
Jeesoo Lee ◽  
Aakash N. Gupta ◽  
Liliana E. Ma ◽  
Michel B. Scott ◽  
O’Neil R. Mason ◽  
...  

2017 ◽  
Vol 32 (8) ◽  
pp. 1032-1044 ◽  
Author(s):  
Shohei Miyazaki ◽  
Keiichi Itatani ◽  
Toyoki Furusawa ◽  
Teruyasu Nishino ◽  
Masataka Sugiyama ◽  
...  

2020 ◽  
Vol 72 ◽  
pp. 49-60
Author(s):  
Hojin Ha ◽  
Kyung Jin Park ◽  
Petter Dyverfeldt ◽  
Tino Ebbers ◽  
Dong Hyun Yang

Sign in / Sign up

Export Citation Format

Share Document