human pregnancy
Recently Published Documents


TOTAL DOCUMENTS

1753
(FIVE YEARS 98)

H-INDEX

99
(FIVE YEARS 5)

2021 ◽  
Vol 11 (1) ◽  
pp. 225
Author(s):  
Marie-Eve Brien ◽  
Virginie Gaudreault ◽  
Katia Hughes ◽  
Dexter J. L. Hayes ◽  
Alexander E. P. Heazell ◽  
...  

Blockade of the interleukin-1 (IL-1) pathway has been used therapeutically in several inflammatory diseases including arthritis and cryopyrin-associated periodic syndrome (CAPS). These conditions frequently affect women of childbearing age and continued usage of IL-1 specific treatments throughout pregnancy has been reported. IL-1 is involved in pregnancy complications and its blockade could have therapeutic potential. We systematically reviewed all reported cases of IL-1 blockade in human pregnancy to assess safety and perinatal outcomes. We searched several databases to find reports of specific blockade of the IL-1 pathway at any stage of pregnancy, excluding broad spectrum or non-specific anti-inflammatory intervention. Our literature search generated 2439 references of which 22 studies included, following extensive review. From these, 88 different pregnancies were assessed. Most (64.8%) resulted in healthy term deliveries without any obstetrical/neonatal complications. Including pregnancy exposed to Anakinra or Canakinumab, 12 (15.0%) resulted in preterm birth and one stillbirth occurred. Regarding neonatal complications, 2 cases of renal agenesis (2.5%) were observed, and 6 infants were diagnosed with CAPS (7.5%). In conclusion, this systematic review describes that IL-1 blockade during pregnancy is not associated with increased adverse perinatal outcomes, considering that treated women all presented an inflammatory disease associated with elevated risk of pregnancy complications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Miranda Li ◽  
Alyssa Brokaw ◽  
Anna M. Furuta ◽  
Brahm Coler ◽  
Veronica Obregon-Perko ◽  
...  

A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016–2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.


Author(s):  
J Zhou ◽  
R C West ◽  
E L Ehlers ◽  
T Ezashi ◽  
L C Schulz ◽  
...  

Abstract It is very difficult to gain a better understanding of the events in human pregnancy that occur during and just after implantation because such pregnancies are not yet clinically detectable. Animal models of human placentation are inadequate. In vitro models that utilize immortalized cell lines and cells derived from trophoblast cancers have multiple limitations. Primary cell and tissue cultures often have limited lifespans and cannot be obtained from the peri-implantation period. We present here two contemporary models of human peri-implantation placental development: extended blastocyst culture and stem-cell derived trophoblast culture. We discuss current research efforts that employ these models and how such models might be used in the future to study the “black box” stage of human pregnancy.


Sign in / Sign up

Export Citation Format

Share Document