scholarly journals Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces

2011 ◽  
Vol 2011 (1) ◽  
Author(s):  
Jong Kyu Kim ◽  
Truong Minh Tuyen
2020 ◽  
Vol 9 (3) ◽  
pp. 681-690
Author(s):  
Khairul Saleh ◽  
Hafiz Fukhar-ud-din

Abstract In this work, we propose an iterative scheme to approach common fixed point(s) of a finite family of generalized multi-valued nonexpansive mappings in a CAT(0) space. We establish and prove convergence theorems for the algorithm. The results are new and interesting in the theory of $$CAT\left( 0\right) $$ C A T 0 spaces and are the analogues of corresponding ones in uniformly convex Banach spaces and Hilbert spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Ali Alghamdi ◽  
Naseer Shahzad ◽  
Habtu Zegeye

We study a strong convergence for a common fixed point of a finite family of quasi-Bregman nonexpansive mappings in the framework of real reflexive Banach spaces. As a consequence, convergence for a common fixed point of a finite family of Bergman relatively nonexpansive mappings is discussed. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common solution of a finite family equilibrium problem and a common zero of a finite family of maximal monotone mappings. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.


Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1525-1536 ◽  
Author(s):  
Habtu Zegeye

In this paper, we study a strong convergence theorem for a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. As a consequence, we prove convergence theorem for a common fixed point of a finite family of Bergman relatively nonexpansive mappings. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common zero of a finite family of Bregman inverse strongly monotone mappings and a solution of a finite family of variational inequality problems.


Author(s):  
K. O. Aremu ◽  
C. Izuchukwu ◽  
A. A. Mebawondu ◽  
O. T. Mewomo

In this paper, we introduce a viscosity-type proximal point algorithm comprising of a finite composition of resolvents of monotone bifunctions and a generalized asymptotically nonspreading mapping recently introduced by Phuengrattana [Appl. Gen. Topol. 18 (2017) 117–129]. We establish a strong convergence result of the proposed algorithm to a common solution of a finite family of equilibrium problems and fixed point problem for a generalized asymptotically nonspreading and nonexpansive mappings, which is also a unique solution of some variational inequality problems in an Hadamard space. We apply our result to solve convex feasibility problem and to approximate a common solution of a finite family of minimization problems in an Hadamard space.


2016 ◽  
Vol 27 (5-6) ◽  
pp. 949-961 ◽  
Author(s):  
Sebsibe Teferi Woldeamanuel ◽  
Mengistu Goa Sangago ◽  
Habtu Zegeye Hailu

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuanheng Wang ◽  
Xiuping Wu ◽  
Chanjuan Pan

AbstractIn this paper, we propose an iteration algorithm for finding a split common fixed point of an asymptotically nonexpansive mapping in the frameworks of two real Banach spaces. Under some suitable conditions imposed on the sequences of parameters, some strong convergence theorems are proved, which also solve some variational inequalities that are closely related to optimization problems. The results here generalize and improve the main results of other authors.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
H. Zegeye ◽  
N. Shahzad

We provide an iterative process which converges strongly to a common fixed point of finite family of asymptoticallyk-strict pseudocontractive mappings in Banach spaces. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear operators.


Sign in / Sign up

Export Citation Format

Share Document