Effects of electrical stimulation of the calf muscle using a new textile electrode setup on blood flow and discomfort

2022 ◽  
Author(s):  
Paul Ackermann
1993 ◽  
Vol 113 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Tian-Ying Ren ◽  
E. Laurikainen ◽  
W. S. Quirk ◽  
J. M. Miller ◽  
A. L. Nuttall

1997 ◽  
Vol 17 (6) ◽  
pp. 686-694 ◽  
Author(s):  
Elvire Vaucher ◽  
Josiane Borredon ◽  
Gilles Bonvento ◽  
Jacques Seylaz ◽  
Pierre Lacombe

We earlier reported that electrical stimulation of the rat nucleus basalis of Meynert (NBM) induces large cerebral blood flow increases, particularly in frontal cortical areas but also in some subcortical regions. The present study was designed to address the issue of blood flow control exerted by NBM projections. To this aim, we have determined whether these flow increases were associated with proportionate changes in metabolic activity as evaluated by cerebral glucose utilization (CGU) strictly under the same experimental conditions in the conscious rat. An electrode was chronically implanted in a reactive site of the NBM as determined by laser-Doppler flowmetry (LDF) of the cortical circulation. One to two weeks later, while the cortical blood flow was monitored by LDF, we measured CGU using the [14C]2-deoxyglucose autoradiographic technique during unilateral electrical stimulation of the NBM, and analyzed the local flow-metabolism relationship. The large increases in cortical blood flow induced by NBM stimulation, exceeding 300% in various frontal areas, were associated with at most 24% increases in CGU (as compared with the control group) in one frontal area. By contrast, strong increases in CGU exceeding 150% were observed in subcortical regions ipsilateral to the stimulation, especially in extrapyramidal structures, associated with proportionate CBF changes. Thus, none of the blood flow changes observed in the cortex can be ascribed to an increased metabolic activity, whereas CBF and CGU were coupled in many subcortical areas. This result indicates that different mechanisms, which do not necessarily involve any metabolic factor, contribute to the regulation of the cerebral circulation at the cortical and subcortical level. Because the distribution of the uncoupling is coincident with that of cholinergic NBM projections directly reaching cortical microvessels, these data strongly support the hypothesis that NBM neurons are capable of exerting a neurogenic control of the cortical microcirculation.


2020 ◽  
Vol 46 (4) ◽  
pp. 384-390
Author(s):  
G. I. Lobov ◽  
Yu. P. Gerasimenko ◽  
T. R. Moshonkina

1993 ◽  
Vol 265 (4) ◽  
pp. R733-R738 ◽  
Author(s):  
H. Izumi ◽  
K. Karita

Local application of capsaicin (threshold dose 150 microM) or nicotine (threshold dose 15 mM) to the nasal mucosa as well as electrical stimulation (threshold intensity 10 V) of the nasal mucosa elicited dose- or intensity-dependent blood flow increases in the ipsilateral lower lips of the anesthetized cats. Pretreatment with 3 mM capsaicin applied locally to the nasal mucosa abolished or reduced the vasodilation in response to capsaicin, nicotine, and ammonia vapor but not to light mechanical or electrical stimulation of the nasal mucosa. The blood flow increases elicited by all above stimuli were greatly reduced by pretreatment with hexamethonium, an autonomic ganglion blocker. These results suggest that stimulation of the nasal mucosa by chemical (capsaicin, nicotine, ammonia), mechanical, or electrical methods elicits the autonomic reflex vasodilatation in the cat lower lips. Furthermore, there seem to be at least two types of afferent fibers in the nasal mucosa of the cats: one type is capsaicin-sensitive fibers, while another type is capsaicin-resistant fibers involved in reflex vasodilatation.


1978 ◽  
Vol 235 (4) ◽  
pp. H445-H451 ◽  

Previous studies from this laboratory have indicated an important role for angiotensin-sensitive anteroventral third ventricular (AV3V) brain structures in normal regulation of arterial pressure and development of renal hypertension. The present experiments examined the effects of electrical stimulation of these periventricular areas on arterial pressure and regional blood flow in the anesthetized rat. Electrodes were placed in the AV3V region 3–10 days prior to acute studies. Blood flow was measured in extracorporeal blood flow circuits. Electrical stimulation produced only small changes in arterial pressure. Despite the small pressure changes, stimulation caused marked frequency-dependent alterations in regional blood flow. Renal and splanchnic flows were reduced while hindlimb flow was increased. Resistance changes were abolished by surgical denervation or ganglionic blockade but were unaffected by adrenalectomy. Hemodynamic responses to AV3V stimulation were abolished by a lesion in the area of the median eminence. It may be concluded that AV3V stimulation, through activation of pathways descending through the ventromedial hypothalamus-median eminence region, produces profound regional blood flow shifts without greatly altering arterial pressure.


Sign in / Sign up

Export Citation Format

Share Document