scholarly journals Response to selection while maximizing genetic variance in small populations

2016 ◽  
Vol 48 (1) ◽  
Author(s):  
Isabel Cervantes ◽  
Juan Pablo Gutiérrez ◽  
Theo H.E. Meuwissen
2012 ◽  
Vol 94 (1) ◽  
pp. 39-48 ◽  
Author(s):  
MONTGOMERY SLATKIN ◽  
MARK KIRKPATRICK

SummaryEpistasis plays important roles in evolution, for example in the evolution of recombination, but each of the current methods to study epistasis has limitations. Here, we propose a new strategy. If a quantitative trait locus (QTL) affecting a quantitative character has been identified, individuals who have the same genotype at that QTL can be regarded as comprising a subpopulation whose response to selection depends in part on interactions with other loci affecting the character. We define the marginal differences to be the differences in the average phenotypes of individuals with different genotypes of that QTL. We show that the response of the marginal differences to directional selection on the quantitative character depends on epistatic gene interactions. For a model with no interactions, the marginal differences do not differ on average from their starting values once linkage equilibrium has been re-established. If there is directional epistasis, meaning that interactions between the QTL and other loci tend to increase or decrease the character more than under an additive model, then the marginal differences will tend to increase or decrease accordingly when larger values of the character are selected for. We develop a likelihood ratio test for significant changes in the marginal differences and show that it has some power to detect directional epistasis for realistic sample sizes. We also show that epistatic interactions which affect the evolution of the marginal differences do not necessarily result in a substantial epistatic component of the genetic variance.


Genetics ◽  
1974 ◽  
Vol 76 (1) ◽  
pp. 163-168
Author(s):  
Margrith Wehrli Verghese

ABSTRACT When directional selection for an additively inherited trait is opposed by natural selection favoring heterozygous genotypes a selection plateau may be reached where genetic variance is present. The amount of response when this plateau is reached is a simple function of the selection response in the first generation and the intensity of natural selection. When selection is practiced in small populations, the sizes of the initial equilibrium gene frequencies are at least as important as the intensity of natural selection in determining the probability of fixing desirable alleles.


1981 ◽  
Vol 23 (5) ◽  
pp. 487-494 ◽  
Author(s):  
M. Gopinath Rao ◽  
J. P. Jain

2009 ◽  
Vol 276 (1661) ◽  
pp. 1507-1515 ◽  
Author(s):  
Jon R Bridle ◽  
Sedef Gavaz ◽  
W. Jason Kennington

Given that evolution can generate rapid and dramatic shifts in the ecological tolerance of a species, what prevents populations adapting to expand into new habitat at the edge of their distributions? Recent population genetic models have focused on the relative costs and benefits of migration between populations. On the one hand, migration may limit adaptive divergence by preventing local populations from matching their local selective optima. On the other hand, migration may also contribute to the genetic variance necessary to allow populations to track these changing optima. Empirical evidence for these contrasting effects of gene flow in natural situations are lacking, largely because it remains difficult to acquire. Here, we develop a way to explore theoretical models by estimating genetic divergence in traits that confer stress resistance along similar ecological gradients in rainforest Drosophila . This approach allows testing for the coupling of clinal divergence with local density, and the effects of genetic variance and the rate of change of the optimum on the response to selection. In support of a swamping effect of migration on phenotypic divergence, our data show no evidence for a cline in stress-related traits where the altitudinal gradient is steep, but significant clinal divergence where it is shallow. However, where clinal divergence is detected, sites showing trait means closer to the presumed local optimum have more genetic variation than sites with trait means distant from their local optimum. This pattern suggests that gene flow also aids a sustained response to selection.


Sign in / Sign up

Export Citation Format

Share Document