linkage equilibrium
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Diaeldin A. Salih ◽  
Awadia M. Ali ◽  
Moses Njahira ◽  
Khalid M. Taha ◽  
Mohammed S. Mohammed ◽  
...  

Theileria annulata, which causes tropical theileriosis, is a major impediment to improving cattle production in Sudan. Tropical theileriosis disease is prevalent in the north and central regions of Sudan. Outbreaks of the disease have been observed outside the known endemic areas, in east and west regions of the country, due to changes in tick vector distribution and animal movement. A live schizont attenuated vaccination based on tissue culture technology has been developed to control the disease. The parasite in the field as well as the vaccine strain need to be genotyped before the vaccinations are practiced, in order to be able to monitor any breakthrough or breakdown, if any, after the deployment of the vaccine in the field. Nine microsatellite markers were used to genotype 246 field samples positive for T. annulata DNA and the vaccine strain. North and central populations have a higher multiplicity of infection than east and west populations. The examination of principal components showed two sub-structures with a mix of all four populations in both clusters and the vaccine strain used being aligned with left-lower cluster. Only the north population was in linkage equilibrium, while the other populations were in linkage disequilibrium, and linkage equilibrium was found when all samples were regarded as single population. The genetic identity of the vaccine and field samples was 0.62 with the north population and 0.39 with west population. Overall, genetic investigations of four T. annulata populations in Sudan revealed substantial intermixing, with only two groups exhibiting regional origin independence. In the four geographically distant regions analyzed, there was a high level of genetic variation within each population. The findings show that the live schizont attenuated vaccine, Atbara strain may be acceptable for use in all Sudanese regions where tropical theileriosis occurs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evan R. Hermann ◽  
Emily Chambers ◽  
Danielle N. Davis ◽  
McKale R. Montgomery ◽  
Dingbo Lin ◽  
...  

The SLC39A8 gene encodes a divalent metal transporter, ZIP8. SLC39A8 is associated with pleiotropic effects across multiple tissues, including the brain. We determine the different brain magnetic resonance imaging (MRI) phenotypes associated with SLC39A8. We used a phenome-wide association study approach followed by joint and conditional association analysis. Using the summary statistics datasets from a brain MRI genome-wide association study on adult United Kingdom (UK) Biobank participants, we systematically selected all brain MRI phenotypes associated with single-nucleotide polymorphisms (SNPs) within 500 kb of the SLC39A8 genetic locus. For all significant brain MRI phenotypes, we used GCTA-COJO to determine the number of independent association signals and identify index SNPs for each brain MRI phenotype. Linkage equilibrium for brain phenotypes with multiple independent signals was confirmed by LDpair. We identified 24 brain MRI phenotypes that vary due to MRI type and brain region and contain a SNP associated with the SLC39A8 locus. Missense ZIP8 polymorphism rs13107325 was associated with 22 brain MRI phenotypes. Rare ZIP8 variants present in a published UK Biobank dataset are associated with 6 brain MRI phenotypes also linked to rs13107325. Among the 24 datasets, an additional 4 association signals were identified by GCTA-COJO and confirmed to be in linkage equilibrium with rs13107325 using LDpair. These additional association signals represent new probable causative SNPs in addition to rs13107325. This study provides leads into how genetic variation in SLC39A8, a trace mineral transport gene, is linked to brain structure differences and may affect brain development and nervous system function.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1808-1808
Author(s):  
Evan Hermann ◽  
Emily Chambers ◽  
Danielle Davis ◽  
Mckale Montgomery ◽  
Winyoo Chowanadisai

Abstract Objectives The SLC39A8 gene encodes a divalent metal transporter, ZIP8. ZIP8 polymorphisms are associated with pleiotropic effects including altered risks for schizophrenia. Our objective is to determine the different brain MRI phenotypes associated at or near the SLC39A8 (ZIP8) genetic locus using a phenome-wide association (PheWAS) approach followed by joint and conditional association analysis. Methods Using the summary statistics database containing brain MRI genome-wide association study (GWAS) data, we systematically selected all brain MRI phenotypes which were associated with single-nucleotide polymorphisms (SNPs) within 1 million bp of the SLC39A8 genetic locus, as defined as reaching a P-value significance cutoff of P < 5.0 × 10–8. For all brain MRI phenotypes reaching significance, we used GCTA-COJO to determine the number of independent association signals using settings of P < 1.0 × 10–5 and a window of 10 million base pairs. Using SNPclip and the European 1000 Genomes linkage panel with a linkage disequilibrium cutoff of r2 > 0.8, we identified SNP candidates at each index SNP. Linkage equilibrium for brain phenotypes with multiple independent signals was confirmed by LDpair. Results We identified 25 brain MRI phenotypes that vary due to MRI type and brain region that all contain a SNP associated with the SLC39A8 locus. All of these datasets have at least 1 index SNP directly labeling or in high linkage disequilibrium with rs13107325, which encodes a missense mutation in the SLC39A8 (ZIP8). Among the 25 datasets, an additional 4 association signals were identified by GCTA-COJO and confirmed to be in linkage equilibrium with rs13107325 using LDpair. For these additional association signals, probable causative SNPs were identified from the index SNP using SNPclip. Conclusions From the 25 brain MRI phenotypes, we identified new probable causative SNPs in addition to a previously reported missense SNP (rs13107325) associated with schizophrenia. This study provides leads into how SNPs in genes involved in trace metal transport influence brain structures and affect risks for schizophrenia. Funding Sources This work was funded by grants from the Oklahoma Center for the Advancement of Science and Technology and the Oklahoma Agricultural Experiment Station.


2019 ◽  
pp. 103-118
Author(s):  
Jeremy F. Taylor ◽  
Joao L. Rocha

2019 ◽  
Vol 477 ◽  
pp. 84-95
Author(s):  
Timothy W. Russell ◽  
Matthew J. Russell ◽  
Francisco Úbeda ◽  
Vincent A.A. Jansen

2019 ◽  
Vol 109 (1) ◽  
pp. 155-168 ◽  
Author(s):  
Tamieka L. Pearce ◽  
Jason B. Scott ◽  
Stacey J. Pilkington ◽  
Sarah J. Pethybridge ◽  
Frank S. Hay

Tan spot, caused by Didymella tanaceti, is one of the most important foliar diseases affecting pyrethrum in Tasmania, Australia. Population dynamics, including mating-type ratios and genetic diversity of D. tanaceti, was characterized within four geographically separated fields in both late winter and spring 2012. A set of 10 microsatellite markers was developed and used to genotype 774 D. tanaceti isolates. Isolates were genotypically diverse, with 123 multilocus genotypes (MLG) identified across the four fields. Fifty-eight MLG contained single isolates and Psex analysis estimated that, within many of the recurrent MLG, there were multiple clonal lineages derived from recombination. Isolates of both mating types were at a 1:1 ratio following clone correction in each field at each sampling period, which was suggestive of sexual recombination. No evidence of genetic divergence of isolates of each mating type was identified, indicating admixture within the population. Linkage equilibrium in two of the four field populations sampled in late winter could not be discounted following clone correction. Evaluation of temporal changes in gene and genotypic diversity identified that they were both similar for the two sampling periods despite an increased D. tanaceti isolation frequency in spring. Genetic differentiation was similar in populations sampled between the two sampling periods within fields or between fields. These results indicated that sexual reproduction may have contributed to tan spot epidemics within Australian pyrethrum fields and has contributed to a genetically diverse D. tanaceti population.


Sign in / Sign up

Export Citation Format

Share Document