scholarly journals RNA 3D structure prediction guided by independent folding of homologous sequences

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz M. Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule’s sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates the importance of the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identifying limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.

2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates how important is the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identification of limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.


2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates how important is the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identification of limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.


2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates how important is the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identification of limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.


2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi- step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Conclusion Through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence.


2019 ◽  
Vol 20 (17) ◽  
pp. 4116 ◽  
Author(s):  
Jun Wang ◽  
Jian Wang ◽  
Yanzhao Huang ◽  
Yi Xiao

3D structures of RNAs are the basis for understanding their biological functions. However, experimentally solved RNA 3D structures are very limited in comparison with known RNA sequences up to now. Therefore, many computational methods have been proposed to solve this problem, including our 3dRNA. In recent years, 3dRNA has been greatly improved by adding several important features, including structure sampling, structure ranking and structure optimization under residue-residue restraints. Particularly, the optimization procedure with restraints enables 3dRNA to treat pseudoknots in a new way. These new features of 3dRNA can greatly promote its performance and have been integrated into the 3dRNA v2.0 web server. Here we introduce these new features in the 3dRNA v2.0 web server for the users.


2015 ◽  
Vol 112 (17) ◽  
pp. 5413-5418 ◽  
Author(s):  
Sikander Hayat ◽  
Chris Sander ◽  
Debora S. Marks ◽  
Arne Elofsson

Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand–strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases.


2017 ◽  
Vol 1 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Bernhard C. Thiel ◽  
Christoph Flamm ◽  
Ivo L. Hofacker

We summarize different levels of RNA structure prediction, from classical 2D structure to extended secondary structure and motif-based research toward 3D structure prediction of RNA. We outline the importance of classical secondary structure during all those levels of structure prediction.


Sign in / Sign up

Export Citation Format

Share Document