scholarly journals RNA 3D structure prediction guided by independent folding of homologous sequences

2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates how important is the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identification of limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.

2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates how important is the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identification of limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.


2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates how important is the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identification of limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz M. Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule’s sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion This work, for the first time to our knowledge, demonstrates the importance of the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identifying limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.


2019 ◽  
Author(s):  
Marcin Magnus ◽  
Kalli Kappel ◽  
Rhiju Das ◽  
Janusz Bujnicki

Abstract Background The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction method. EvoClustRNA is a multi- step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Conclusion Through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence.


Author(s):  
Raghunath Satpathy

Proteins play a vital molecular role in all living organisms. Experimentally, it is difficult to predict the protein structure, however alternatively theoretical prediction method holds good for it. The 3D structure prediction of proteins is very much important in biology and this leads to the discovery of different useful drugs, enzymes, and currently this is considered as an important research domain. The prediction of proteins is related to identification of its tertiary structure. From the computational point of view, different models (protein representations) have been developed along with certain efficient optimization methods to predict the protein structure. The bio-inspired computation is used mostly for optimization process during solving protein structure. These algorithms now a days has received great interests and attention in the literature. This chapter aim basically for discussing the key features of recently developed five different types of bio-inspired computational algorithms, applied in protein structure prediction problems.


2019 ◽  
Vol 20 (17) ◽  
pp. 4116 ◽  
Author(s):  
Jun Wang ◽  
Jian Wang ◽  
Yanzhao Huang ◽  
Yi Xiao

3D structures of RNAs are the basis for understanding their biological functions. However, experimentally solved RNA 3D structures are very limited in comparison with known RNA sequences up to now. Therefore, many computational methods have been proposed to solve this problem, including our 3dRNA. In recent years, 3dRNA has been greatly improved by adding several important features, including structure sampling, structure ranking and structure optimization under residue-residue restraints. Particularly, the optimization procedure with restraints enables 3dRNA to treat pseudoknots in a new way. These new features of 3dRNA can greatly promote its performance and have been integrated into the 3dRNA v2.0 web server. Here we introduce these new features in the 3dRNA v2.0 web server for the users.


2015 ◽  
Vol 112 (17) ◽  
pp. 5413-5418 ◽  
Author(s):  
Sikander Hayat ◽  
Chris Sander ◽  
Debora S. Marks ◽  
Arne Elofsson

Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand–strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases.


Author(s):  
Badri Adhikari

AbstractProtein structure prediction continues to stand as an unsolved problem in bioinformatics and biomedicine. Deep learning algorithms and the availability of metagenomic sequences have led to the development of new approaches to predict inter-residue distances—the key intermediate step. Different from the recently successful methods which frame the problem as a multi-class classification problem, this article introduces a real-valued distance prediction method REALDIST. Using a representative set of 43 thousand protein chains, a variant of deep ResNet is trained to predict real-valued distance maps. The contacts derived from the real-valued distance maps predicted by this method, on the most difficult CASP13 free-modeling protein datasets, demonstrate a long-range top-L precision of 52%, which is 17% higher than the top CASP13 predictor Raptor-X and slightly higher than the more recent trRosetta method. Similar improvements are observed on the CAMEO ‘hard’ and ‘very hard’ datasets. Three-dimensional (3D) structure prediction guided by real-valued distances reveals that for short proteins the mean accuracy of the 3D models is slightly higher than the top human predictor AlphaFold and server predictor Quark in the CASP13 competition.


2015 ◽  
Vol 44 (7) ◽  
pp. e63-e63 ◽  
Author(s):  
Michal J. Boniecki ◽  
Grzegorz Lach ◽  
Wayne K. Dawson ◽  
Konrad Tomala ◽  
Pawel Lukasz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document