scholarly journals Accelerated regression-based summary statistics for discrete stochastic systems via approximate simulators

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Richard M. Jiang ◽  
Fredrik Wrede ◽  
Prashant Singh ◽  
Andreas Hellander ◽  
Linda R. Petzold

Abstract Background Approximate Bayesian Computation (ABC) has become a key tool for calibrating the parameters of discrete stochastic biochemical models. For higher dimensional models and data, its performance is strongly dependent on having a representative set of summary statistics. While regression-based methods have been demonstrated to allow for the automatic construction of effective summary statistics, their reliance on first simulating a large training set creates a significant overhead when applying these methods to discrete stochastic models for which simulation is relatively expensive. In this τ work, we present a method to reduce this computational burden by leveraging approximate simulators of these systems, such as ordinary differential equations and τ-Leaping approximations. Results We have developed an algorithm to accelerate the construction of regression-based summary statistics for Approximate Bayesian Computation by selectively using the faster approximate algorithms for simulations. By posing the problem as one of ratio estimation, we use state-of-the-art methods in machine learning to show that, in many cases, our algorithm can significantly reduce the number of simulations from the full resolution model at a minimal cost to accuracy and little additional tuning from the user. We demonstrate the usefulness and robustness of our method with four different experiments. Conclusions We provide a novel algorithm for accelerating the construction of summary statistics for stochastic biochemical systems. Compared to the standard practice of exclusively training from exact simulator samples, our method is able to dramatically reduce the number of required calls to the stochastic simulator at a minimal loss in accuracy. This can immediately be implemented to increase the overall speed of the ABC workflow for estimating parameters in complex systems.

Author(s):  
Hsuan Jung ◽  
Paul Marjoram

In this paper, we develop a Genetic Algorithm that can address the fundamental problem of how one should weight the summary statistics included in an approximate Bayesian computation analysis built around an accept/reject algorithm, and how one might choose the tolerance for that analysis. We then demonstrate that using weighted statistics, and a well-chosen tolerance, in such an approximate Bayesian computation approach can result in improved performance, when compared to unweighted analyses, using one example drawn purely from statistics and two drawn from the estimation of population genetics parameters.


2016 ◽  
Vol 43 (12) ◽  
pp. 2191-2202 ◽  
Author(s):  
Muhammad Faisal ◽  
Andreas Futschik ◽  
Ijaz Hussain ◽  
Mitwali Abd-el.Moemen

Biometrika ◽  
2020 ◽  
Author(s):  
Grégoire Clarté ◽  
Christian P Robert ◽  
Robin J Ryder ◽  
Julien Stoehr

Abstract Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows. To tackle this difficulty, we explore a Gibbs version of the Approximate Bayesian computation approach that runs component-wise approximate Bayesian computation steps aimed at the corresponding conditional posterior distributions, and based on summary statistics of reduced dimensions. While lacking the standard justifications for the Gibbs sampler, the resulting Markov chain is shown to converge in distribution under some partial independence conditions. The associated stationary distribution can further be shown to be close to the true posterior distribution and some hierarchical versions of the proposed mechanism enjoy a closed form limiting distribution. Experiments also demonstrate the gain in efficiency brought by the Gibbs version over the standard solution.


Algorithms ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 265
Author(s):  
Tom Burr ◽  
Andrea Favalli ◽  
Marcie Lombardi ◽  
Jacob Stinnett

Radioisotope identification (RIID) algorithms for gamma-ray spectroscopy aim to infer what isotopes are present and in what amounts in test items. RIID algorithms either use all energy channels in the analysis region or only energy channels in and near identified peaks. Because many RIID algorithms rely on locating peaks and estimating each peak’s net area, peak location and peak area estimation algorithms continue to be developed for gamma-ray spectroscopy. This paper shows that approximate Bayesian computation (ABC) can be effective for peak location and area estimation. Algorithms to locate peaks can be applied to raw or smoothed data, and among several smoothing options, the iterative bias reduction algorithm (IBR) is recommended; the use of IBR with ABC is shown to potentially reduce uncertainty in peak location estimation. Extracted peak locations and areas can then be used as summary statistics in a new ABC-based RIID. ABC allows for easy experimentation with candidate summary statistics such as goodness-of-fit scores and peak areas that are extracted from relatively high dimensional gamma spectra with photopeaks (1024 or more energy channels) consisting of count rates versus energy for a large number of gamma energies.


Sign in / Sign up

Export Citation Format

Share Document