scholarly journals Protein kinase C regulates organic anion transporter 1 through phosphorylating ubiquitin ligase Nedd4–2

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhou Yu ◽  
Chenchang Liu ◽  
Jinghui Zhang ◽  
Zhengxuan Liang ◽  
Guofeng You

Abstract Background Organic anion transporter 1 (OAT1) is a drug transporter expressed on the basolateral membrane of the proximal tubule cells in kidneys. It plays an essential role in the disposition of numerous clinical therapeutics, impacting their pharmacological and toxicological properties. The activation of protein kinase C (PKC) is shown to facilitate OAT1 internalization from cell surface to intracellular compartments and thereby reducing cell surface expression and transport activity of the transporter. The PKC-regulated OAT1 internalization occurs through ubiquitination, a process catalyzed by a E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated 4–2 (Nedd4–2). Nedd4–2 directly interacts with OAT1 and affects ubiquitination, expression and stability of the transporter. However, whether Nedd4–2 is a direct substrate for PKC-induced phosphorylation is unknown. Results In this study, we investigated the role of Nedd4–2 phosphorylation in the PKC regulation of OAT1. The results showed that PKC activation enhanced the phosphorylation of Nedd4–2 and increased the OAT1 ubiquitination, which was accompanied by a decreased OAT1 cell surface expression and transport function. And the effects of PKC could be reversed by PKC-specific inhibitor staurosporine. We further discovered that the quadruple mutant (T197A/S221A/S354A/S420A) of Nedd4–2 partially blocked the effects of PKC on Nedd4–2 phosphorylation and on OAT1 transport activity. Conclusions Our investigation demonstrates that PKC regulates OAT1 likely through direct phosphorylation of Nedd4–2. And four phosphorylation sites (T197, S221, S354, and S420) of Nedd4–2 in combination play an important role in this regulatory process.

2007 ◽  
Vol 293 (1) ◽  
pp. E57-E61 ◽  
Author(s):  
Fanfan Zhou ◽  
Mei Hong ◽  
Guofeng You

Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-human immunodeficiency virus therapeutics, anti-tumor drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT4 is abundantly expressed in the placenta. In the current study, we examined the regulation of hOAT4 by pregnancy-specific hormones progesterone (P4) and 17β-estradiol (E2) and by protein kinase C (PKC) in human placental BeWo cells. P4 induced a time- and concentration-dependent downregulation of hOAT4 transport activity, whereas E2 had no effect on hOAT4 function. The downregulation of hOAT4 activity by P4 mainly resulted from a decreased cell surface expression without a change in total cell expression of the transporter, kinetically revealed as a decreased Vmax without significant change in Km. Activation of PKC by phorbol 12,13-dibutyrate also resulted in an inhibition of hOAT4 activity through a decreased cell surface expression of the transporter. However, P4-induced downregulation of hOAT4 activity could not be prevented by treating hOAT4-expressing cells with the PKC inhibitor staurosporine. We concluded that both P4 and activation of PKC inhibited hOAT4 activity through redistribution of the transporter from cell surface to the intracellular compartments. However, P4 regulates hOAT4 activity by mechanisms independent of PKC pathway.


2016 ◽  
Vol 310 (9) ◽  
pp. F821-F831 ◽  
Author(s):  
Da Xu ◽  
Haoxun Wang ◽  
Qiang Zhang ◽  
Guofeng You

Human organic anion transporter 1 (hOAT1) expressed at the membrane of the kidney proximal tubule cells mediates the body disposition of a diverse array of clinically important drugs, including anti-HIV therapeutics, antitumor drugs, antibiotics, antihypertensives, and antiinflammatories. Therefore, understanding the regulation of hOAT1 will provide significant insights into kidney function and dysfunction. We previously established that hOAT1 transport activity is inhibited by activation of protein kinase C (PKC) through accelerating hOAT1 internalization from cell surface into intracellular endosomes and subsequent degradation. We further established that PKC-induced hOAT1 ubiquitination is an important step preceding hOAT1 internalization. In the current study, we identified two closely related E3 ubiquitin ligases, neural precursor cell expressed, developmentally downregulated 4-1 and 4-2 (Nedd4-1 and Nedd4-2), as important regulators for hOAT1: overexpression of Nedd4-1 or Nedd4-2 enhanced hOAT1 ubiquitination, reduced the hOAT1 amount at the cell surface, and suppressed hOAT1 transport activity. In further exploring the relationship among PKC, Nedd4-1, and Nedd4-2, we discovered that PKC-dependent changes in hOAT1 ubiquitination, expression, and transport activity were significantly blocked in cells transfected with the ligase-dead mutant of Nedd4-2 (Nedd4-2/C821A) or with Nedd4-2-specific siRNA to knockdown endogenous Nedd4-2 but not in cells transfected with the ligase-dead mutant of Nedd4-1 (Nedd4-1/C867S) or with Nedd4-1-specific siRNA to knockdown endogenous Nedd4-1. In conclusion, this is the first demonstration that both Nedd4-1 and Nedd4-2 are important regulators for hOAT1 ubiquitination, expression, and function. Yet they play distinct roles, as Nedd4-2 but not Nedd4-1 is a critical mediator for PKC-regulated hOAT1 ubiquitination, expression, and transport activity.


2009 ◽  
Vol 296 (2) ◽  
pp. E378-E383 ◽  
Author(s):  
Shanshan Li ◽  
Peng Duan ◽  
Guofeng You

Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-human immunodeficiency virus therapeutics, anti-tumor drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney. In the current study, we examined the regulation of hOAT1 by ANG II in kidney COS-7 cells. ANG II induced a concentration- and time-dependent inhibition of hOAT1 transport activity. Such inhibition mainly resulted from a decreased cell surface expression without a change in total cell expression of the transporter, kinetically revealed as a decreased maximal velocity without significant change in Michaelis constant. ANG II-induced inhibition of hOAT1 activity could be prevented by treating hOAT1-expressing cells with staurosporine, a general protein kinase C (PKC) inhibitor. To obtain further information on which PKC isoform mediates ANG II regulation of hOAT1 activity, cellular distribution of various PKC isoforms was examined in cells treated with or without ANG II. We showed that ANG II treatment resulted in a significant translocation of PKCα from cytosol to membrane, and such translocation was blocked by treating hOAT1-expressing cells with Gö-6976, a PKCα-specific inhibitor. We further showed that ANG II-induced inhibition of hOAT1 activity and retrieval of hOAT1 from the cell surface could also be prevented by treating hOAT1-expressing cells with Gö-6976. We concluded that ANG II inhibited hOAT1 activity through activation of PKCα, which led to the redistribution of the transporter from the cell surface to the intracellular compartments.


1998 ◽  
Vol 76 ◽  
pp. 96
Author(s):  
Toshihiko Yanagita ◽  
Hideyuki Kobayaslu ◽  
Ryuichi Yamamoto ◽  
Keizou Masumoto ◽  
Tomoaki Yuhi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document