scholarly journals Composite mathematical modeling of calcium signaling behind neuronal cell death in Alzheimer’s disease

2018 ◽  
Vol 12 (S1) ◽  
Author(s):  
Bobby Ranjan ◽  
Ket Hing Chong ◽  
Jie Zheng
2014 ◽  
Vol 20 (12) ◽  
pp. 1452-1457 ◽  
Author(s):  
Monica K Wetzel-Smith ◽  
◽  
Julie Hunkapiller ◽  
Tushar R Bhangale ◽  
Karpagam Srinivasan ◽  
...  

2019 ◽  
Vol 10 (8) ◽  
pp. 3555-3564 ◽  
Author(s):  
Ravit Malishev ◽  
Sukhendu Nandi ◽  
Dariusz Śmiłowicz ◽  
Shamchal Bakavayev ◽  
Stanislav Engel ◽  
...  

2019 ◽  
Vol 116 (18) ◽  
pp. 9094-9102 ◽  
Author(s):  
Jie Xiang ◽  
Zhi-Hao Wang ◽  
Eun Hee Ahn ◽  
Xia Liu ◽  
Shan-Ping Yu ◽  
...  

BDNF, an essential trophic factor implicated in synaptic plasticity and neuronal survival, is reduced in Alzheimer’s disease (AD). BDNF deficiency’s association with Tau pathology in AD is well documented. However, the molecular mechanisms accounting for these events remain incompletely understood. Here we show that BDNF deprivation triggers Tau proteolytic cleavage by activating δ-secretase [i.e., asparagine endopeptidase (AEP)], and the resultant Tau N368 fragment binds TrkB receptors and blocks its neurotrophic signals, inducing neuronal cell death. Knockout of BDNF or TrkB receptors provokes δ-secretase activation via reducing T322 phosphorylation by Akt and subsequent Tau N368 cleavage, inducing AD-like pathology and cognitive dysfunction, which can be restored by expression of uncleavable Tau N255A/N368A mutant. Blocking the Tau N368–TrkB complex using Tau repeat-domain 1 peptide reverses this pathology. Thus, our findings support that BDNF reduction mediates Tau pathology via activating δ-secretase in AD.


Sign in / Sign up

Export Citation Format

Share Document