rare mutation
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 92)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Vol 252 (3364) ◽  
pp. 23
Author(s):  
Michael Le Page

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huanhuan Xu ◽  
Qi Liang ◽  
Xian Xu ◽  
Shanyue Tan ◽  
Sumeng Wang ◽  
...  

Abstract Background HER2 is a member of the ERBB family of receptor tyrosine kinases, and HER2 mutations occur in 1–4% of non-small cell lung cancer (NSCLC) as an oncogenic driver mutation. We found a rare mutation of HER2 p.Asp769Tyr in NSCLC. Case presentation We presented a case of a 68-year-old nonsmoking male patient with brain metastasis from lung adenocarcinoma harboring a rare mutation of HER2 p.Asp769Tyr. After multiple lines of treatment, he obtained a durable response (10 months) to afatinib and anlotinib. Conclusion We reported for the first time that afatinib and anlotinib have successfully treated lung adenocarcinoma with HER2 p.Asp769Tyr mutation. This finding can provide an insight into the optimal treatment of lung adenocarcinoma patients with novel mutations. Additionally, we summarized the efficacy of targeted therapy for HER2 mutant lung cancer in this article.


2021 ◽  
Author(s):  
Yunjing Shi ◽  
Zeping Qiu ◽  
Yongjie Ding ◽  
Yanjia Chen ◽  
Andi Zhang ◽  
...  

Abstract Lung cancer is a major global health problem because of its high incidence and mortality. Targeted therapies have transformed treatment of driver-mutated metastatic non-small cell lung cancer (NSCLC). Nevertheless, recent studies demonstrated that cardiovascular disease (CVD) was the second leading cause of mortality in cancer survivors now, management of patients’ cardiovascular health during the course of anticancer therapy has become a great challenge faced by the oncologists. Anticancer related CV complications are not limited to traditional chemotherapy, but are also increasingly recognized in targeted therapy. We present a case of pulmonary embolism and bradycardia in a 91-year-old NSCLC patient treated with crizotinib for a rare MET Y1003S mutation. To our knowledge, this is the second report to show antitumor response of crizotinib in lung cancer patients with such a rare mutation. However, the patient complained chest tightness and shortness of breath after a month of standard dose crizotinib therapy. Non-invasive examination revealed new onset bradycardia and pulmonary embolism (PE). Such clinical manifestations were associated with targeted therapy-related cardiovascular(CV)toxicity, on which the emerging discipline cardio-oncology focused, and a multidisciplinary investigation and treatment was conducted. The case highlights the CV adverse events of novel therapies and the current challenges to be tackled in cardio-oncology.


2021 ◽  
Vol 38 (1) ◽  
Author(s):  
Ehtisham ul Haq Makhdoom ◽  
Haseeb Anwar ◽  
Shahid Mahmood Baig ◽  
Ghulam Hussain

Background & Objectives: Primary Microcephaly (MCPH) is a rare neurogenetic disease, manifesting congenitally reduced head circumference and non-progressive intellectual disability (ID). To date, twenty-eight genes with biallelic mutations have been reported for this disorder. The study aimed for molecular genetic characterization of Pakistani families segregating MCPH. Methods: We studied two unrelated consanguineous families (family A and B) presenting >2 patients with diagnostic symptoms of MCPH, born to asymptomatic parents. We employed whole-exome sequencing (WES) of probands to find putative causal mutations. The candidate variants were further confirmed and analyzed for co-segregation by Sanger sequencing of all available members of each family. This study was conducted at Government College University, Faisalabad, Pakistan, and Cologne Center for Genomics (CCG), University of Cologne, Germany; during 2017-2020. Results: We identified a novel homozygous variant c.10097_10098delGA, p.(Gly3366Glufs*19) in exon 26 of ASPM gene in family A which presents with moderate intellectual disability, speech impairment, visual abnormalities, seizures, and ptyalism. Family B was found to segregate nonsense, homozygous variant c.448C>T p.(Arg150*) in CDK5RAP2. The patients also exhibited mild to severe seizures without ptyalism that has not been previously reported in patients with mutations in the CDK5RAP2 gene. Conclusion: We report a novel mutation in ASPM and ultra-rare mutation in the CDK5RAP2 gene, both causing primary microcephaly. The study expands the mutational spectrum of the ASPM gene to 212, and also adds to the clinical spectrum of CDK5RAP2 mutations. It also demonstrated the utility of WES in the investigation and genetic diagnosis of genetically heterogeneous disorders like MCPH. These findings would aid in diagnostic and preventive strategies including carrier screening, cascade testing, and genetic counselling. doi: https://doi.org/10.12669/pjms.38.1.4464 How to cite this:Makhdoom EH, Anwar H, Baig SM, Hussain G. Whole exome sequencing identifies a novel mutation in ASPM and ultra-rare mutation in CDK5RAP2 causing Primary microcephaly in consanguineous Pakistani families. Pak J Med Sci. 2022;38(1):---------.  doi: https://doi.org/10.12669/pjms.38.1.4464 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Vol 9 (32) ◽  
pp. 10018-10023
Author(s):  
Li-Qiong Jiang ◽  
Yan-Qiong Zhou ◽  
Ke Yuan ◽  
Jian-Fang Zhu ◽  
Yan-Lan Fang ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12376
Author(s):  
Mikhail S. Bazhenov ◽  
Anastasiya G. Chernook ◽  
Ludmila A. Bespalova ◽  
Tatiana I. Gritsay ◽  
Nadezhda A. Polevikova ◽  
...  

The Growth-regulating factors (GRF) are a family of plant-specific transcription factors that have roles in plant growth, development and stress response. In this study the diversity of the TaGRF3-2A (TraesCS2A02G435100) gene was investigated in Russian bread wheat germplasm by means of next generation sequencing and molecular markers, and the results compared with those from multiple wheat genome and exome sequencing projects. The results showed that an allele possessing c.495G>T polymorphism found in Bezostaya 1 and designated as TaGRF3-2Ab, is connected with earlier heading and better grain filling under conditions of the Krasnodar Krai. TaGRF3-2Ab is more frequent among Russian winter wheat cultivars than in other germplasms found in the world, implying that it is adaptive for the Chernozem region. A new rare mutation of the TaGRF3-2A was found in the spring wheat cultivar Novosibirskaya 67. The molecular markers developed will facilitate utilization of TaGRF3-2A mutations in future agronomic studies and wheat improvement. Albeit GRF3-2Ab may be good at maintaining high milling quality of the grain, it should be used with caution in breeding of winter wheat cultivars in the perspective of climate change.


Author(s):  
Yuki Otsubo ◽  
Shoji Matsumura ◽  
Naohiro Ikeda ◽  
Masayuki Yamane

AbstractError-corrected sequences (ECSs) that utilize double-stranded DNA sequences are useful in detecting mutagen-induced mutations. However, relatively higher frequencies of G:C > T:A (1 × 10−7 bp) and G:C > C:G (2 × 10−7 bp) errors decrease the accuracy of detection of rare G:C mutations (approximately 10−7 bp). Oxidized guanines in single-strand (SS) overhangs generated after shearing could serve as the source of these errors. To remove these errors, we first computationally discarded up to 20 read bases corresponding to the ends of the DNA fragments. Error frequencies decreased proportionately with trimming length; however, the results indicated that they were not sufficiently removed. To efficiently remove SS overhangs, we evaluated three mechanistically distinct SS-specific nucleases (S1 Nuclease, mung bean nuclease, and RecJf exonuclease) and found that they were more efficient than computational trimming. Consequently, we established Jade-Seq™, an ECS protocol with S1 Nuclease treatment, which reduced G:C > T:A and G:C > C:G errors to 0.50 × 10−7 bp and 0.12 × 10−7 bp, respectively. This was probably because S1 Nuclease removed SS regions, such as gaps and nicks, depending on its wide substrate specificity. Subsequently, we evaluated the mutation-detection sensitivity of Jade-Seq™ using DNA samples from TA100 cells exposed to 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene, which contained the rare G:C > T:A mutation (i.e., 2 × 10−7 bp). Fold changes of G:C > T:A compared to the vehicle control were 1.2- and 1.3-times higher than those of samples without S1 Nuclease treatment, respectively. These findings indicate the potential of Jade-Seq™ for detecting rare mutations and determining the mutagenicity of environmental mutagens.


2021 ◽  
Vol 11 (11) ◽  
pp. 1070
Author(s):  
Bobana Samardžija ◽  
Aristea Pavešić Pavešić Radonja ◽  
Beti Zaharija ◽  
Mihaela Bergman ◽  
Éva Renner ◽  
...  

An emerging phenomenon in our understanding of the pathophysiology of mental illness is the idea that specific proteins may form insoluble aggregates in the brains of patients, in partial analogy to similar proteinopathies in neurodegenerative diseases. Several proteins have now been detected as forming such aggregates in the brains of patients, including DISC1, dysbindin-1 and TRIOBP-1. Recently, neuronal PAS domain protein 3 (NPAS3), a known genetic risk factor for schizophrenia, was implicated through a V304I point mutation in a family with major mental illness. Investigation of the mutation revealed that it may lead to aggregation of NPAS3. Here we investigated NPAS3 aggregation in insular cortex samples from 40 individuals, by purifying the insoluble fraction of these samples and testing them by Western blotting. Strikingly, full-length NPAS3 was found in the insoluble fraction of 70% of these samples, implying that aggregation is far more widely spread than can be accounted for by this rare mutation. We investigated the possible mechanism of aggregation further in neuroblastoma cells, finding that oxidative stress plays a larger role than the V304I mutation. Finally, we tested to see if NPAS3 aggregation could also be seen in blood serum, as a more accessible tissue than the human brain for future diagnosis. While no indication of NPAS3 aggregation was seen in the serum, soluble NPAS3 was detected, and was more prevalent in patients with schizophrenia than in those with major depressive disorder or controls. Aggregation of NPAS3 therefore appears to be a widespread and multifactorial phenomenon. Further research is now needed to determine whether it is specifically enhanced in schizophrenia or other mental illnesses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Dai ◽  
Lucia Ruojia Wu ◽  
Sherry Xi Chen ◽  
Michael Xiangjiang Wang ◽  
Lauren Yuxuan Cheng ◽  
...  

AbstractQuantitation of rare somatic mutations is essential for basic research and translational clinical applications including minimal residual disease (MRD) detection. Though unique molecular identifier (UMI) has suppressed errors for rare mutation detection, the sequencing depth requirement is high. Here, we present Quantitative Blocker Displacement Amplification (QBDA) which integrates sequence-selective variant enrichment into UMI quantitation for accurate quantitation of mutations below 0.01% VAF at only 23,000X depth. Using a panel of 20 genes recurrently altered in acute myeloid leukemia, we demonstrate quantitation of various mutations including single base substitutions and indels down to 0.001% VAF at a single locus with less than 4 million sequencing reads, allowing sensitive MRD detection in patients during complete remission. In a pan-cancer panel and a melanoma hotspot panel, we detect mutations down to 0.1% VAF using only 1 million reads. QBDA provides a convenient and versatile method for sensitive mutation quantitation using low-depth sequencing.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yu Wang ◽  
Songtao Liu ◽  
Alei Feng ◽  
Huan Luo ◽  
Jinwei Hu ◽  
...  

Estimated glomerular filtration rate (EGFR)-sensitive mutations are extremely important for targeted treatment strategies in lung cancer. Osimertinib can effectively inhibit the activity of EGFR-sensitive mutations, including the T790M mutation. However, the efficiency of osimertinib for rare mutation types of T790 is unclear. Here, we report the case of a Chinese patient with lung adenocarcinoma (LADC) harboring a T790I mutation who achieved significant benefits from osimertinib treatment.


Sign in / Sign up

Export Citation Format

Share Document