familial alzheimer’s disease
Recently Published Documents


TOTAL DOCUMENTS

889
(FIVE YEARS 116)

H-INDEX

74
(FIVE YEARS 9)

2021 ◽  
Vol 17 (S6) ◽  
Author(s):  
Duncan Alston ◽  
Antoinette O'Connor ◽  
Philip SJ Weston ◽  
Kirsty Lu ◽  
Ivanna M Pavisic ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nobuto Kakuda ◽  
Mako Takami ◽  
Masayasu Okochi ◽  
Kensaku Kasuga ◽  
Yasuo Ihara ◽  
...  

AbstractPresenilin (PS) with a genetic mutation generates abundant β-amyloid protein (Aβ) 43. Senile plaques are formed by Aβ43 in the cerebral parenchyma together with Aβ42 at middle ages. These brains cause the early onset of Alzheimer’s disease (AD), which is known as familial Alzheimer’s disease (FAD). Based on the stepwise processing model of Aβ generation by γ-secretase, we reassessed the levels of Aβs in the cerebrospinal fluid (CSF) of FAD participants. While low levels of Aβ38, Aβ40, and Aβ42 were generated in the CSF of FAD participants, the levels of Aβ43 were unchanged in some of them compared with other participants. We sought to investigate why the level of Aβ43 was unchanged in FAD participants. These characteristics of Aβ generation were observed in the γ-secretase assay in vitro using cells, which express FAD mutations in PS1. Aβ38 and Aβ40 generation from their precursors, Aβ42 and Aβ43, was decreased in PS1 mutants compared with wild-type (WT) PS1, as observed in the CSF. Both the ratios of Aβ38/Aβ42 and Aβ40/Aβ43 in PS1 mutants were lower than those in the WT. However, the ratio of Aβ43/amyloid precursor protein intracellular domain (AICD) increased in the PS1 mutants in an onset age dependency, while other Aβ/AICD ratios were decreased or unchanged. Importantly, liquid chromatography–mass spectrometry found that the generation of Aβ43 was stimulated from Aβ48 in PS1 mutants. This result indicates that PS1 mutants switched the Aβ43 generating line, which reflects the level of Aβ43 in the CSF and forming senile plaques.


2021 ◽  
Vol 13 ◽  
Author(s):  
Qi Qin ◽  
Liping Fu ◽  
Ruimin Wang ◽  
Jihui Lyu ◽  
Huixuan Ma ◽  
...  

Background: With the advancements of amyloid imaging in recent years, this new imaging diagnostic method has aroused great interest from researchers. Till now, little is known regarding amyloid deposition specialty in patients with early-onset familial Alzheimer's disease (EOFAD), and even less is known about its role in cognitive impairments.Objectives: Our study aimed to evaluate the amyloid deposition in five patients with EOFAD, 15 patients with late-onset sporadic AD, and 12 healthy subjects utilizing 11C-labeled Pittsburgh compound-B (11C-PiB) amyloid PET imaging. Moreover, we figured out the correlation between striatal and cortical standardized uptake value ratios (SUVRs). We also investigated the correlation between 11C-PiB retention and cognitive presentation.Results: All patients with EOFAD showed high amyloid deposition in the striatum, a pattern that is not usually seen in patients with late-onset sporadic AD. The SUVR in the striatum, especially in the amygdala, showed significant correlations with cortex SUVR in EOFAD. However, neither striatal nor cortical 11C-PiB retention was related to cognitive decline.Conclusions: The amyloid distribution in patients with EOFAD differs from late-onset sporadic AD, with higher amyloid deposits in the striatum. Our study also demonstrated positive correlations in 11C-PiB retention between the striatum and other cortical areas. We revealed that the distribution of amyloid in the brain is not random but diffuses following the functional and anatomical connections. However, the degree and pattern of amyloid deposition were not correlated with cognitive deficits.


Sign in / Sign up

Export Citation Format

Share Document