chlorinated ethenes
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 28)

H-INDEX

40
(FIVE YEARS 3)

Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 131989
Author(s):  
Yuji Yamazaki ◽  
Gaku Kitamura ◽  
Xiaowei Tian ◽  
Ichiro Suzuki ◽  
Takeshi Kobayashi ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 102356
Author(s):  
Argyro Kokkoli ◽  
Nilspeiter Agerholm ◽  
Henrik R. Andersen ◽  
Kamilla M.S. Kaarsholm

Data in Brief ◽  
2021 ◽  
pp. 107291
Author(s):  
Cecilie B. Ottosen ◽  
Melissa Skou ◽  
Emilie Sammali ◽  
Jeremy Zimmermann ◽  
Daniel Hunkeler ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.


2021 ◽  
Vol 42 (4) ◽  
pp. 1033-1045
Author(s):  
S.K. Chen ◽  
◽  
Y.L. Chin ◽  
H.Y. Yang ◽  
C.J. Lu ◽  
...  

Aim: This study explores anaerobic/aerobic biodegradation efficiencies of aerobic cometabolism with methanotrophs when contaminants trichloroethylene (TCE) and cis-1,2-dichloroethylene (cDCE) are present individually or in tandem. Methodology: Batch tests and an anaerobic/aerobic column system were used to simulate saturated, contaminated aquifers. A brown glass bottle with an effective volume of 44 m l-1 was prepared for the batch test. An integrated one-dimensional sequential anaerobic/aerobic column system was used to simulate the accumulative intermediates such as TCE, cDCE and VC caused by incomplete degradation of PCE during the upgradient anaerobic stage in the saturated aquifer. In the downgradient aquifer, aerobic cometabolism was employed to degrade the intermediates. Methanotrophs in the aerobic aquifer were inoculated to degrade the by-products of incomplete degradation of PCE by aerobic cometabolism. Results: In the batch test, biodegradation of TCE was significantly inhibited by cDCE. However, biodegradation of cDCE was not significantly inhibited by TCE. In the simulated aquifer test, aerobic cometabolism completely degraded intermediates (TCE, cDCE, and VC) produced by incomplete anaerobic degradation of tetrachloroethylene (PCE). The results showed that methane, a by-product of anaerobic reductive dechorination of PCE, was used as a primary substrate for aerobic degradation, at a utilization rate of almost 100%. Interpretation: Biodegradation of TCE was significantly inhibited by cDCE. Bioremediation should have sufficient oxygen and methane at aerobic stage to ensure that chlorinated ethenes fully mineralize.


2021 ◽  
pp. 125883
Author(s):  
Ondřej Lhotský ◽  
Jan Kukačka ◽  
Jan Slunský ◽  
Kristýna Marková ◽  
Jan Němeček ◽  
...  

2021 ◽  
Author(s):  
Riccardo Sprocati ◽  
Massimo Rolle

<p>Electrokinetic (EK) remediation is one of the few in-situ remediation technologies that can effectively remove contaminants from low-permeability porous media. Process-based modeling, including the complex multiphysics and biogeochemical processes occurring during electrokinetic remediation, is instrumental to describe EK systems and to assist in their design. In this work we use NP-Phreeqc-EK [1], a multidimensional, multiphysics code which couples a flow and transport simulator (COMSOL Multiphysics) with a geochemical code (PhreeqcRM) through a MATLAB LiveLink interface. The model allows the simulation of coupled fluid flow, solute transport, charge interactions and biogeochemical reactions during electrokinetics in saturated porous media. The process-based code is applied for the modeling of electrokinetic delivery of amendments to enhance bioremediation (EK-Bio) of chlorinated compounds at a pilot test site [2]. We simulate both conservative and reactive transport scenarios and we compute and show the Nernst-Planck fluxes and the velocities of the different species (such as lactate, chlorinated ethenes and degrading microorganisms). To compare remediation performances and model outcomes we define different metrics quantifying the spatial distribution of the delivered reactants and the mass of the organic contaminants in the system. The process-based model allowed the simulation of the key processes occurring during EK-Bio, including 1) multidimensional electrokinetic transport such as electromigration of charged species and electroosmosis, 2) Coulombic interactions between ions in solution, 3) kinetics of contaminant biodegradation, 4) dynamics of microbial populations, 5) mass transfer limitations and 6) geochemical reactions.</p><p> </p><p>[1] Sprocati, R., Masi, M., Muniruzzaman, M., & Rolle, M. (2019). Modeling electrokinetic transport and biogeochemical reactions in porous media: A multidimensional Nernst–Planck–Poisson approach with PHREEQC coupling. <em>Advances in Water Resources</em>, <strong>127</strong>, 134-147.</p><p>[2] Sprocati, R., Flyvbjerg, J., Tuxen, N., & Rolle, M. (2020). Process-based modeling of electrokinetic-enhanced bioremediation of chlorinated ethenes. <em>Journal of Hazardous Materials</em>, <strong>397</strong>, 122787.</p>


Sign in / Sign up

Export Citation Format

Share Document