scholarly journals Analysis of international traveler mobility patterns in Tokyo to identify geographic foci of dengue fever risk

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Baoyin Yuan ◽  
Hyojung Lee ◽  
Hiroshi Nishiura

AbstractTravelers play a role in triggering epidemics of imported dengue fever because they can carry the virus to other countries during the incubation period. If a traveler carrying dengue virus visits open green space and is bitten by mosquitoes, a local outbreak can ensue. In the present study, we aimed to understand the movement patterns of international travelers in Tokyo using mobile phone data, with the goal of identifying geographical foci of dengue transmission. We analyzed datasets based on mobile phone access to WiFi systems and measured the spatial distribution of international visitors in Tokyo on two specific dates (one weekday in July 2017 and another weekday in August 2017). Mobile phone users were classified by nationality into three groups according to risk of dengue transmission. Sixteen national parks were selected based on their involvement in a 2014 dengue outbreak and abundance of Aedes mosquitoes. We found that not all national parks were visited by international travelers and that visits to cemeteries were very infrequent. We also found that travelers from countries with high dengue prevalence were less likely to visit national parks compared with travelers from dengue-free countries. Travelers from countries with sporadic dengue cases and countries with regional transmission tended to visit common destinations. By contrast, the travel footprints of visitors from countries with continuous dengue transmission were focused on non-green spaces. Entomological surveillance in Tokyo has been restricted to national parks since the 2014 dengue outbreak. However, our results indicate that areas subject to surveillance should include both public and private green spaces near tourist sites.

2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


2021 ◽  
Author(s):  
Daniela Perrotta ◽  
Enrique Frias-Martinez ◽  
Ana Pastore y Piontti ◽  
Qian Zhang ◽  
Miguel Luengo-Oroz ◽  
...  

Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne disease. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson's r=0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility network in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed network, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data capture a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Satish V. Ukkusuri ◽  
P. Suresh C. Rao

Abstract Recent disasters have shown the existence of large variance in recovery trajectories across cities that have experienced similar damage levels. Case studies of such events reveal the high complexity of the recovery process of cities, where inter-city dependencies and intra-city coupling of social and physical systems may affect the outcomes in unforeseen ways. Despite the large implications of understanding the recovery processes of cities after disasters for many domains including critical services, disaster management, and public health, little work have been performed to unravel this complexity. Rather, works are limited to analyzing and modeling cities as independent entities, and have largely neglected the effect that inter-city connectivity may have on the recovery of each city. Large scale mobility data (e.g. mobile phone data, social media data) have enabled us to observe human mobility patterns within and across cities with high spatial and temporal granularity. In this paper, we investigate how inter-city dependencies in both physical as well as social forms contribute to the recovery performances of cities after disasters, through a case study of the population recovery patterns of 78 Puerto Rican counties after Hurricane Maria using mobile phone location data. Various network metrics are used to quantify the types of inter-city dependencies that play an important role for effective post-disaster recovery. We find that inter-city social connectivity, which is measured by pre-disaster mobility patterns, is crucial for quicker recovery after Hurricane Maria. More specifically, counties that had more influx and outflux of people prior to the hurricane, were able to recover faster. Our findings highlight the importance of fostering the social connectivity between cities to prepare effectively for future disasters. This paper introduces a new perspective in the community resilience literature, where we take into account the inter-city dependencies in the recovery process rather than analyzing each community as independent entities.


2019 ◽  
Vol 18 ◽  
Author(s):  
Merkebe Getachew Demissie ◽  
Santi Phithakkitnukoon ◽  
Lina Kattan ◽  
Ali Farhan

Sign in / Sign up

Export Citation Format

Share Document