Applied Network Science
Latest Publications


TOTAL DOCUMENTS

432
(FIVE YEARS 328)

H-INDEX

12
(FIVE YEARS 7)

Published By Springer-Verlag

2364-8228

2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Hanae El Gouj ◽  
Christian Rincón-Acosta ◽  
Claire Lagesse

AbstractRoad networks result from a subtle balance between geographical coverage and rapid access to strategic points. An understanding of their structure is fundamental when it comes to evaluating and improving territorial accessibility. This study is designed to provide insight into the progressive structuring of territorial patterns by analyzing the evolution of road networks. Studying road network morphogenesis requires geohistorical data, provided here by historical maps from which earlier road networks can be digitized. A hypergraph is constructed from these networks by combining road segments into “ways” on the basis of a method for defining the continuity of road segments. Next, indicators are computed for these ways based on topological and geometrical features. The road patterns of three cities in the Burgundy Franche-Comte region of France (Dijon, Besançon, and Pontarlier) at three historical periods (the 18th, 19th, and twentieth centuries) are then analyzed. In this manner, their topological features and centrality characteristics can be compared from snapshots at different times and places. The innovative method proposed in this paper helps us to read features of the road patterns accurately and to make simple interpretations. It can be applied to any territory for which data is available. The results highlight the underlying structure of the three cities, reveal information about the history and the functioning of the networks, and give preliminary insights into the morphogenesis of those cities. Prospectively this work aims to identify the mechanisms that drive change in road networks. Detecting stability or variation in indicators over time can help in identifying similar behavior, despite geographic and cultural distances, as well as evolution mechanisms linked to specificities of each city. The study of road network morphogenesis can make a major contribution to understanding how road network structure affects accessibility and mobility.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Alessandro Muscolino ◽  
Antonio Di Maria ◽  
Rosaria Valentina Rapicavoli ◽  
Salvatore Alaimo ◽  
Lorenzo Bellomo ◽  
...  

Abstract Background The rapidly increasing biological literature is a key resource to automatically extract and gain knowledge concerning biological elements and their relations. Knowledge Networks are helpful tools in the context of biological knowledge discovery and modeling. Results We introduce a novel system called NETME, which, starting from a set of full-texts obtained from PubMed, through an easy-to-use web interface, interactively extracts biological elements from ontological databases and then synthesizes a network inferring relations among such elements. The results clearly show that our tool is capable of inferring comprehensive and reliable biological networks.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuji Fujita ◽  
Noritaka Usami

AbstractWe propose a scale-invariant derivative of the h-index as “h-dimension”, which is analogous to the fractal dimension of the h-index for institutional performance analysis. The design of h-dimension comes from the self-similar characteristics of the citation structure. We applied this h-dimension to data of 134 Japanese national universities and research institutes, and found well-performing medium-sized research institutes, where we identified multiple organizations related to natural disasters. This result is reasonable considering that Japan is frequently hit by earthquakes, typhoons, volcanoes and other natural disasters. However, these characteristic institutes are screened by larger universities if we depend on the existing h-index. The scale-invariant property of the proposed method helps to understand the nature of academic activities, which must promote fair and objective evaluation of research activities to maximize intellectual, and eventually economic opportunity.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Shilun Zhang ◽  
Xunyi Zhao ◽  
Huijuan Wang

AbstractProgress has been made in how to suppress epidemic spreading on temporal networks via blocking all contacts of targeted nodes or node pairs. In this work, we develop contact blocking strategies that remove a fraction of contacts from a temporal (time evolving) human contact network to mitigate the spread of a Susceptible-Infected-Recovered epidemic. We define the probability that a contact c(i, j, t) is removed as a function of a given centrality metric of the corresponding link l(i, j) in the aggregated network and the time t of the contact. The aggregated network captures the number of contacts between each node pair. A set of 12 link centrality metrics have been proposed and each centrality metric leads to a unique contact removal strategy. These strategies together with a baseline strategy (random removal) are evaluated in empirical contact networks via the average prevalence, the peak prevalence and the time to reach the peak prevalence. We find that the epidemic spreading can be mitigated the best when contacts between node pairs that have fewer contacts and early contacts are more likely to be removed. A strategy tends to perform better when the average number contacts removed from each node pair varies less. The aggregated pruned network resulted from the best contact removal strategy tends to have a large largest eigenvalue, a large modularity and probably a small largest connected component size.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Samir Chowdhury ◽  
Steve Huntsman ◽  
Matvey Yutin

AbstractPath homology is a powerful method for attaching algebraic invariants to digraphs. While there have been growing theoretical developments on the algebro-topological framework surrounding path homology, bona fide applications to the study of complex networks have remained stagnant. We address this gap by presenting an algorithm for path homology that combines efficient pruning and indexing techniques and using it to topologically analyze a variety of real-world complex temporal networks. A crucial step in our analysis is the complete characterization of path homologies of certain families of small digraphs that appear as subgraphs in these complex networks. These families include all digraphs, directed acyclic graphs, and undirected graphs up to certain numbers of vertices, as well as some specially constructed cases. Using information from this analysis, we identify small digraphs contributing to path homology in dimension two for three temporal networks in an aggregated representation and relate these digraphs to network behavior. We then investigate alternative temporal network representations and identify complementary subgraphs as well as behavior that is preserved across representations. We conclude that path homology provides insight into temporal network structure, and in turn, emergent structures in temporal networks provide us with new subgraphs having interesting path homology.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Alan Miguel Forero Sanabria ◽  
Martha Patricia Bohorquez Castañeda ◽  
Rafael Ricardo Rentería Ramos ◽  
Jorge Mateu

AbstractThis paper provides new tools for analyzing spatio-temporal event networks. We build time series of directed event networks for a set of spatial distances, and based on scan-statistics, the spatial distance that generates the strongest change of event network connections is chosen. In addition, we propose an empirical random network event generator to detect significant motifs throughout time. This generator preserves the spatial configuration but randomizes the order of the occurrence of events. To prevent the large number of links from masking the count of motifs, we propose using standardized counts of motifs at each time slot. Our methodology is able to detect interaction radius in space, build time series of networks, and describe changes in its topology over time, by means of identification of different types of motifs that allows for the understanding of the spatio-temporal dynamics of the phenomena. We illustrate our methodology by analyzing thefts occurred in Medellín (Colombia) between the years 2003 and 2015.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Satyaki Roy ◽  
Preetam Ghosh

AbstractCOVID-19 is a global health crisis that has caused ripples in every aspect of human life. Amid widespread vaccinations testing, manufacture and distribution efforts, nations still rely on human mobility restrictions to mitigate infection and death tolls. New waves of infection in many nations, indecisiveness on the efficacy of existing vaccinations, and emerging strains of the virus call for intelligent mobility policies that utilize contact pattern and epidemiological data to check contagion. Our earlier work leveraged network science principles to design social distancing optimization approaches that show promise in slowing infection spread however, they prove to be computationally prohibitive and require complete knowledge of the social network. In this work, we present scalable and distributed versions of the optimization approaches based on Markov Chain Monte Carlo Gibbs sampling and grid-based spatial parallelization that tackle both the challenges faced by the optimization strategies. We perform extensive simulation experiments to show the ability of the proposed strategies to meet necessary network science measures and yield performance comparable to the optimal counterpart, while exhibiting significant speed-up. We study the scalability of the proposed strategies as well as their performance in realistic scenarios when a fraction of the population temporarily flouts the location recommendations.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bojan Evkoski ◽  
Nikola Ljubešić ◽  
Andraž Pelicon ◽  
Igor Mozetič ◽  
Petra Kralj Novak

AbstractTwitter data exhibits several dimensions worth exploring: a network dimension in the form of links between the users, textual content of the tweets posted, and a temporal dimension as the time-stamped sequence of tweets and their retweets. In the paper, we combine analyses along all three dimensions: temporal evolution of retweet networks and communities, contents in terms of hate speech, and discussion topics. We apply the methods to a comprehensive set of all Slovenian tweets collected in the years 2018–2020. We find that politics and ideology are the prevailing topics despite the emergence of the Covid-19 pandemic. These two topics also attract the highest proportion of unacceptable tweets. Through time, the membership of retweet communities changes, but their topic distribution remains remarkably stable. Some retweet communities are strongly linked by external retweet influence and form super-communities. The super-community membership closely corresponds to the topic distribution: communities from the same super-community are very similar by the topic distribution, and communities from different super-communities are quite different in terms of discussion topics. However, we also find that even communities from the same super-community differ considerably in the proportion of unacceptable tweets they post.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Stefan Bloemheuvel ◽  
Jurgen van den Hoogen ◽  
Martin Atzmueller

AbstractComplex networks lend themselves for the modeling of multidimensional data, such as relational and/or temporal data. In particular, when such complex data and their inherent relationships need to be formalized, complex network modeling and its resulting graph representations enable a wide range of powerful options. In this paper, we target this—connected to specific machine learning approaches on graphs for Structural Health Monitoring (SHM) from an analysis and predictive (maintenance) perspective. Specifically, we present a framework based on Complex Network Modeling, integrating Graph Signal Processing (GSP) and Graph Neural Network (GNN) approaches. We demonstrate this framework in our targeted application domain of SHM. In particular, we focus on a prominent real-world SHM use case, i. e., modeling and analyzing sensor data (strain, vibration) of a large bridge in the Netherlands. In our experiments, we show that GSP enables the identification of the most important sensors, for which we investigate a set of search and optimization approaches. Furthermore, GSP enables the detection of specific graph signal patterns (i. e., mode shapes), capturing physical functional properties of the sensors in the applied complex network. In addition, we show the efficacy of applying GNNs for strain prediction utilizing this kind of sensor data.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Robert Harper ◽  
Philip Tee

AbstractThe structure of complex networks has long been understood to play a role in transmission and spreading phenomena on a graph. Such networks form an important part of the structure of society, including transportation networks. As society fights to control the COVID-19 pandemic, an important question is how to choose the optimum balance between the full opening of transport networks and the control of epidemic spread. In this work we investigate the interplay between network dismantling and epidemic spread rate as a proxy for the imposition of travel restrictions to control disease spread. For network dismantling we focus on the weighted and unweighted forms of metrics that capture the topological and informational structure of the network. Our results indicate that there is benefit to a directed approach to imposing travel restrictions, but we identify that more detailed models of the transport network are necessary for definitive results.


Sign in / Sign up

Export Citation Format

Share Document