scholarly journals Mobile phone data reveals the importance of pre-disaster inter-city social ties for recovery after Hurricane Maria

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Satish V. Ukkusuri ◽  
P. Suresh C. Rao

Abstract Recent disasters have shown the existence of large variance in recovery trajectories across cities that have experienced similar damage levels. Case studies of such events reveal the high complexity of the recovery process of cities, where inter-city dependencies and intra-city coupling of social and physical systems may affect the outcomes in unforeseen ways. Despite the large implications of understanding the recovery processes of cities after disasters for many domains including critical services, disaster management, and public health, little work have been performed to unravel this complexity. Rather, works are limited to analyzing and modeling cities as independent entities, and have largely neglected the effect that inter-city connectivity may have on the recovery of each city. Large scale mobility data (e.g. mobile phone data, social media data) have enabled us to observe human mobility patterns within and across cities with high spatial and temporal granularity. In this paper, we investigate how inter-city dependencies in both physical as well as social forms contribute to the recovery performances of cities after disasters, through a case study of the population recovery patterns of 78 Puerto Rican counties after Hurricane Maria using mobile phone location data. Various network metrics are used to quantify the types of inter-city dependencies that play an important role for effective post-disaster recovery. We find that inter-city social connectivity, which is measured by pre-disaster mobility patterns, is crucial for quicker recovery after Hurricane Maria. More specifically, counties that had more influx and outflux of people prior to the hurricane, were able to recover faster. Our findings highlight the importance of fostering the social connectivity between cities to prepare effectively for future disasters. This paper introduces a new perspective in the community resilience literature, where we take into account the inter-city dependencies in the recovery process rather than analyzing each community as independent entities.

2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Guangshuo Chen ◽  
Aline Carneiro Viana ◽  
Marco Fiore ◽  
Carlos Sarraute

Abstract Mobile phone data are a popular source of positioning information in many recent studies that have largely improved our understanding of human mobility. These data consist of time-stamped and geo-referenced communication events recorded by network operators, on a per-subscriber basis. They allow for unprecedented tracking of populations of millions of individuals over long periods that span months. Nevertheless, due to the uneven processes that govern mobile communications, the sampling of user locations provided by mobile phone data tends to be sparse and irregular in time, leading to substantial gaps in the resulting trajectory information. In this paper, we illustrate the severity of the problem through an empirical study of a large-scale Call Detail Records (CDR) dataset. We then propose Context-enhanced Trajectory Reconstruction, a new technique that hinges on tensor factorization as a core method to complete individual CDR-based trajectories. The proposed solution infers missing locations with a median displacement within two network cells from the actual position of the user, on an hourly basis and even when as little as 1% of her original mobility is known. Our approach lets us revisit seminal works in the light of complete mobility data, unveiling potential biases that incomplete trajectories obtained from legacy CDR induce on key results about human mobility laws, trajectory uniqueness, and movement predictability.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Kota Tsubouchi ◽  
Naoya Fujiwara ◽  
Takayuki Wada ◽  
Yoshihide Sekimoto ◽  
...  

Abstract While large scale mobility data has become a popular tool to monitor the mobility patterns during the COVID-19 pandemic, the impacts of non-compulsory measures in Tokyo, Japan on human mobility patterns has been under-studied. Here, we analyze the temporal changes in human mobility behavior, social contact rates, and their correlations with the transmissibility of COVID-19, using mobility data collected from more than 200K anonymized mobile phone users in Tokyo. The analysis concludes that by April 15th (1 week into state of emergency), human mobility behavior decreased by around 50%, resulting in a 70% reduction of social contacts in Tokyo, showing the strong relationships with non-compulsory measures. Furthermore, the reduction in data-driven human mobility metrics showed correlation with the decrease in estimated effective reproduction number of COVID-19 in Tokyo. Such empirical insights could inform policy makers on deciding sufficient levels of mobility reduction to contain the disease.


2015 ◽  
Vol 18 (2) ◽  
pp. 417-428 ◽  
Author(s):  
Pedro G. Lind ◽  
Adriano Moreira

AbstractWe present a study on human mobility at small spatial scales. Differently from large scale mobility, recently studied through dollar-bill tracking and mobile phone data sets within one big country or continent, we report Brownian features of human mobility at smaller scales. In particular, the scaling exponents found at the smallest scales is typically close to one-half, differently from the larger values for the exponent characterizing mobility at larger scales. We carefully analyze 12-month data of the Eduroam database within the Portuguese university of Minho. A full procedure is introduced with the aim of properly characterizing the human mobility within the network of access points composing the wireless system of the university. In particular, measures of flux are introduced for estimating a distance between access points. This distance is typically non-Euclidean, since the spatial constraints at such small scales distort the continuum space on which human mobility occurs. Since two different exponents are found depending on the scale human motion takes place, we raise the question at which scale the transition from Brownian to non-Brownian motion takes place. In this context, we discuss how the numerical approach can be extended to larger scales, using the full Eduroam in Europe and in Asia, for uncovering the transition between both dynamical regimes.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sofonias Tessema ◽  
Amy Wesolowski ◽  
Anna Chen ◽  
Maxwell Murphy ◽  
Jordan Wilheim ◽  
...  

Local and cross-border importation remain major challenges to malaria elimination and are difficult to measure using traditional surveillance data. To address this challenge, we systematically collected parasite genetic data and travel history from thousands of malaria cases across northeastern Namibia and estimated human mobility from mobile phone data. We observed strong fine-scale spatial structure in local parasite populations, providing positive evidence that the majority of cases were due to local transmission. This result was largely consistent with estimates from mobile phone and travel history data. However, genetic data identified more detailed and extensive evidence of parasite connectivity over hundreds of kilometers than the other data, within Namibia and across the Angolan and Zambian borders. Our results provide a framework for incorporating genetic data into malaria surveillance and provide evidence that both strengthening of local interventions and regional coordination are likely necessary to eliminate malaria in this region of Southern Africa.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Hsiao-Han Chang ◽  
Amy Wesolowski ◽  
Ipsita Sinha ◽  
Christopher G Jacob ◽  
Ayesha Mahmud ◽  
...  

For countries aiming for malaria elimination, travel of infected individuals between endemic areas undermines local interventions. Quantifying parasite importation has therefore become a priority for national control programs. We analyzed epidemiological surveillance data, travel surveys, parasite genetic data, and anonymized mobile phone data to measure the spatial spread of malaria parasites in southeast Bangladesh. We developed a genetic mixing index to estimate the likelihood of samples being local or imported from parasite genetic data and inferred the direction and intensity of parasite flow between locations using an epidemiological model integrating the travel survey and mobile phone calling data. Our approach indicates that, contrary to dogma, frequent mixing occurs in low transmission regions in the southwest, and elimination will require interventions in addition to reducing imported infections from forested regions. Unlike risk maps generated from clinical case counts alone, therefore, our approach distinguishes areas of frequent importation as well as high transmission.


2021 ◽  
Author(s):  
Daniela Perrotta ◽  
Enrique Frias-Martinez ◽  
Ana Pastore y Piontti ◽  
Qian Zhang ◽  
Miguel Luengo-Oroz ◽  
...  

Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne disease. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson's r=0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility network in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed network, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data capture a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.


Author(s):  
Yingzi Wang ◽  
Xiao Zhou ◽  
Anastasios Noulas ◽  
Cecilia Mascolo ◽  
Xing Xie ◽  
...  

Chronic diseases like cancer and diabetes are major threats to human life. Understanding the distribution and progression of chronic diseases of a population is important in assisting the allocation of medical resources as well as the design of policies in preemptive healthcare. Traditional methods to obtain large scale indicators on population health, e.g., surveys and statistical analysis, can be costly and time-consuming and often lead to a coarse spatio-temporal picture. In this paper, we leverage a dataset describing the human mobility patterns of citizens in a large metropolitan area. By viewing local human lifestyles we predict the evolution rate of several chronic diseases at the level of a city neighborhood. We apply the combination of a collaborative topic modeling (CTM) and a Gaussian mixture method (GMM) to tackle the data sparsity challenge and achieve robust predictions on health conditions simultaneously. Our method enables the analysis and prediction of disease rate evolution at fine spatio-temporal scales and demonstrates the potential of incorporating datasets from mobile web sources to improve population health monitoring. Evaluations using real-world check-in and chronic disease morbidity datasets in the city of London show that the proposed CTM+GMM model outperforms various baseline methods.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Yunchang Zhang ◽  
Satish V. Ukkusuri

AbstractIn recent years, extreme shocks, such as natural disasters, are increasing in both frequency and intensity, causing significant economic loss to many cities around the world. Quantifying the economic cost of local businesses after extreme shocks is important for post-disaster assessment and pre-disaster planning. Conventionally, surveys have been the primary source of data used to quantify damages inflicted on businesses by disasters. However, surveys often suffer from high cost and long time for implementation, spatio-temporal sparsity in observations, and limitations in scalability. Recently, large scale human mobility data (e.g. mobile phone GPS) have been used to observe and analyze human mobility patterns in an unprecedented spatio-temporal granularity and scale. In this work, we use location data collected from mobile phones to estimate and analyze the causal impact of hurricanes on business performance. To quantify the causal impact of the disaster, we use a Bayesian structural time series model to predict the counterfactual performances of affected businesses (what if the disaster did not occur?), which may use performances of other businesses outside the disaster areas as covariates. The method is tested to quantify the resilience of 635 businesses across 9 categories in Puerto Rico after Hurricane Maria. Furthermore, hierarchical Bayesian models are used to reveal the effect of business characteristics such as location and category on the long-term resilience of businesses. The study presents a novel and more efficient method to quantify business resilience, which could assist policy makers in disaster preparation and relief processes.


Sign in / Sign up

Export Citation Format

Share Document