scholarly journals Roles of reactive oxygen species, mitochondrial membrane potential, and p53 in evodiamine-induced apoptosis and G2/M arrest of human anaplastic thyroid carcinoma cells

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chih-Chiang Chien ◽  
Ming-Shun Wu ◽  
Shih-Wei Chou ◽  
Ganbolor Jargalsaikhan ◽  
Yen-Chou Chen

Abstract Background Our previous studies have shown that evodiamine (EVO) as paclitaxel and nocodazole could trigger apoptosis in various human cancer cells including human renal cell carcinoma cells, colorectal carcinoma cells, and glioblastoma cells. This study aims to investigate the anti-cancer effects of EVO on human anaplastic thyroid carcinoma (ATC) cells, and underlining mechanism. Methods Two different endogenous p53 status human anaplastic thyroid carcinoma (ATC) cells including SW1736 (wtp53) and KAT4B (mutp53) were applied in the present study. The cytotoxicity of EVO on ATC cells was measured by MTT assay, and apoptosis and G2/M arrest were detected by propidium iodide (PI) staining followed by flow cytometry. Expression of indicated proteins was evaluated by Western blotting analysis, and pharmacological studies using chemical inhibitors and siRNA were performed for elucidating underlying mechanism. The roles of mitochondrial membrane potential and reactive oxygen species were investigated by flow cytometry using DiOC6 and DCFH-DA dye, respectively. Results SW1736 (wtp53) cells showed a higher apoptotic percentage than KAT4B (mutp53) cells in response to EVO stimulation via a flow cytometric analysis. Mechanistic studies showed that increased p53 and its downstream proteins, and disrupted MMP with increased intracellular peroxide production participated in EVO-induced apoptosis and G2/M arrest of SW1736 cells. In EVO-treated KAT4B cells, significant increases in G2/M percentage but little apoptotic events by EVO was observed. Structure-activity analysis showed that an alkyl group at position 14 was critical for induction of apoptosis related to ROS production and MMP disruption in SW1736 cells. Conclusion Evidence indicated that the endogenous p53 status affected the sensitivity of ATC cells to EVO-induced apoptosis and G2/M arrest, revealing the potential role of p53 related to increased ROS production and disrupted MMP in the anticancer actions of EVO, and alkylation at position 14 of EVO is a critical substitution for apoptosis of ATC cells.

2020 ◽  
Author(s):  
Mengjie Huangfu ◽  
Juan Wang ◽  
Dan Yu ◽  
Jianli Qin ◽  
Xiao Guan ◽  
...  

Abstract Background: Osthole is a natural coumarin which has been proved to inhibit growth of cancer cells by inducing cancer cells death, while its mechanism of anticancer remains unclearly. In our study, we found that osthole activated multiple forms of cell death including apoptosis, secondary necrosis and mitophagy in receptor interacting protein kinase (RIP) 3-deficient cervical cancer HeLa cells. Methods: Cell viability was detected by MTT assay. Cell membrane integrity was detected by LDH release assay and PI staining. Cell apoptosis and necrosis were detected by flow cytometry assay. Reactive oxygen species (ROS) was detected by DCFH-DA staining and mitochondrial membrane potential (MMP) was detected by JC-1 staining using flow cytometry. The expression of proteins was detected by western blotting assay and proteomics. Xenograft tumor model was used to evaluate the effect of osthole in vivo.Results: Our study showed osthole caused HeLa cells apoptosis and secondary necrosis, which is a phenomenon of the apoptotic cells’ plasma membrane breakdown. And when Hela cells pretreatment with Z-DEVD-FMK, an irreversible caspase-3 inhibitor, not only inhibited osthole-induced apoptosis but also necrosis. Moreover, we found that Z-DEVD-FMK reversed the effect of osthole on the induction of cleaved the N-terminal fragment of GSDME in Hela cells. Furthermore, inhibition of NAD (P) H: quinone oxidoreductase 1 (NQO1) by osthole induced the overproduction of reactive oxygen species (ROS). ROS inhibitor N-Acetyl-L-cysteine (NAC) not only reduced osthole-induced apoptosis, but also reversed its effect on the necrotic induction and the GSDME N-terminal generation. It was shown that osthole decreased mitochondrial membrane potential (MMP) and increased the expression of PTEN-induced putative kinase 1 (PINK1) and Parkin, which indicated that the activation of mitophagy induced by osthole. Meanwhile, as well as apoptosis and secondary necrosis, mitophagy was also restrained by NAC. Conclusions: In conclusion, all these data suggested that osthole induced apoptosis, secondary necrosis and mitophagy via NQO1-mediated ROS overproduction.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769836 ◽  
Author(s):  
Si Hyoung Kim ◽  
Jun Goo Kang ◽  
Chul Sik Kim ◽  
Sung-Hee Ihm ◽  
Moon Gi Choi ◽  
...  

The influence of celastrol alone or in combination with paclitaxel on survival of anaplastic thyroid carcinoma cells was investigated. In 8505C and SW1736 cells, after treatment of celastrol, cell viability decreased, and cytotoxic activity increased. The protein levels of heat shock protein (hsp) 90, hsp70, Bax, death receptor 5, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase, phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-c-Jun N-terminal kinase (JNK) were elevated, and those of Bcl2, phospho-nuclear factor-kappaB (NF-κB), and total and phospho-Akt were reduced. The endoplasmic reticulum stress markers expression and reactive oxygen species production were enhanced. In celastrol-treated cells, N-acetylcysteine increased cell viability and phospho-NF-κB protein levels, and decreased reactive oxygen species production and cytotoxic activity. The protein levels of cyclooxygenase 2, phospho-ERK1/2, phospho-JNK and Bip were diminished. After treatment of both celastrol and paclitaxel, compared with paclitaxel alone, cell viability and the percentage of viable cells were reduced, and death rate and cytotoxic activity were elevated. The protein levels of phospho-ERK1/2, phospho-JNK, Bip, and cyclooxygenase 2, and reactive oxygen species production were enhanced. All of the Combination Index values calculated by Chou–Talalay equation were lower than 1.0, implying the synergism between celastrol and paclitaxel in induction of cell death. In conclusion, our results suggest that celastrol induces cytotoxicity through involvement of Bcl2 family proteins and death receptor, and modulation of phospho-NF-κB, Akt, and mitogen-activated protein kinase in association with endoplasmic reticulum stress and reactive oxygen species production in anaplastic thyroid carcinoma cells. Moreover, celastrol synergizes with paclitaxel in induction of cytotoxicity in anaplastic thyroid carcinoma cells.


Thyroid ◽  
2012 ◽  
pp. 120406132503004
Author(s):  
EunSook Kim ◽  
Michiko Matsuse ◽  
Vladimir Saenko ◽  
Keiji Suzuki ◽  
Akira Ohtsuru ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
María M. Romero ◽  
Luciana Balboa ◽  
Juan I. Basile ◽  
Beatriz López ◽  
Viviana Ritacco ◽  
...  

Tuberculosis pathogenesis was earlier thought to be mainly related to the host but now it appears to be clear that bacterial factors are also involved. Genetic variability ofMycobacterium tuberculosis(Mtb) could be slight but it may lead to sharp phenotypic differences. We have previously reported that nonopsonizedMtbH37Rv induce apoptosis of polymorphonuclear neutrophils (PMNs) by a mechanism that involves the p38 pathway. Here we evaluated the capability to induce PMN apoptosis of two prevalentMtblineages in Argentina, the Latin America and Mediterranean (LAM), and Haarlem, using the H37Rv as a reference strain. Results showed that LAM strains strongly induced apoptosis of PMN which correlated with the induction of reactive oxygen species (ROS) production and p38 activation. Interestingly, the highly prosperous multidrug-resistant M strain, belonging to the Haarlem lineage, lacked the ability to activate and to induce PMN apoptosis as a consequence of (1) a weak ROS production and (2) the contribution of antiapoptotic mechanisms mediated at least by ERK. Although with less skill, M is able to enter the PMN so that phenotypic differences could lead PMN to be a reservoir allowing some pathogens to prevail and persist over other strains in the community.


Parasitology ◽  
2018 ◽  
Vol 145 (9) ◽  
pp. 1251-1259 ◽  
Author(s):  
Patricia Andrea Garavaglia ◽  
María Fernanda Rubio ◽  
Marc Laverrière ◽  
Laura Mónica Tasso ◽  
Laura Edith Fichera ◽  
...  

AbstractSeveral ortho-naphthoquinones (o-NQs) have trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Previously, we demonstrated that the aldo-keto reductase from this parasite (TcAKR) reduces o-NQs, such as β-lapachone (β-Lap) and 9,10-phenanthrenequinone (9,10-PQ), with concomitant reactive oxygen species (ROS) production. Recent characterization of TcAKR activity and expression in two T. cruzi strains, CL Brener and Nicaragua, showed that TcAKR expression is 2.2-fold higher in CL Brener than in Nicaragua. Here, we studied the trypanocidal effect and induction of several death phenotypes by β-Lap and 9,10-PQ in epimastigotes of these two strains. The CL Brener strain was more resistant to both o-NQs than Nicaragua, indicating that greater TcAKR activity is unlikely to be a major influence on o-NQ toxicity. Evaluation of changes in ROS production, mitochondrial membrane potential, phosphatidylserine exposure and monodansylcadaverine labelling evidenced that β-Lap and 9,10-PQ induce different death phenotypes depending on the combination of drug and T. cruzi strain analysed. To study whether TcAKR participates in o-NQ activation in intact parasites, β-Lap and 9,10-PQ trypanocidal effect was next evaluated in TcAKR-overexpressing parasites. Only β-Lap was more effective and induced greater ROS production in TcAKR-overexpressing epimastigotes than in controls, suggesting that TcAKR may participate in β-Lap activation.


Sign in / Sign up

Export Citation Format

Share Document